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Abstract

We propose a network model of firm volatility in which the customers’ growth rate

shocks influence the growth rates of their suppliers, larger suppliers have more cus-

tomers, and the strength of a customer-supplier link depends on the size of the cus-

tomer firm. Even though all shocks are i.i.d., the network model produces firm-level

volatility and size distribution dynamics that are consistent with the data. In the cross

section, larger firms and firms with less concentrated customer networks display lower

volatility. Over time, the volatilities of all firms co-move strongly, and their common

factor is concentration of the economy-wide firm size distribution. Network effects are

essential to explaining the joint evolution of the empirical firm size and firm volatility

distributions.
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1 Introduction

Recent research has explored how the network structure and firm size distribution in an econ-

omy can influence aggregate volatility. Acemoglu et al. (2012) and Carvalho (2010) show that

sparsity of inter-sector linkages inhibits diversification in an economy and raises aggregate

volatility. Gabaix (2011) points out that “granularity,” or extreme skewness in firm sizes,

concentrates economic mass among a few very large firms, similarly stifling diversification

and increasing aggregate volatility.

This research is silent about the impact of networks and size concentration on the volatil-

ity of the firm. The volatility of firm-level stock returns and cash flows varies greatly over

time (Lee and Engle (1993)) and across firms (Black (1976), Christie (1982), and Davis et

al. (2007)). Such fluctuations in uncertainty have important implications for investment

and hiring decisions and firm value, as highlighted by Bloom (2009).1 But the underlying

determinants of firm volatility are poorly understood. In much of the work on volatility

in economics and finance, firms are modeled to have heteroscedastic shocks without spec-

ifying the source of heteroscedasticity. Our goal is to understand, both theoretically and

empirically, how inter-firm linkages and size distributions interact to endogenously produce

heteroscedasticity at the firm level.

We propose a simple model in which firms are connected to other firms in a customer-

supplier network. Firms’ idiosyncratic growth rate shocks, which are homoscedastic, are

transmitted in part to their trading partners. Differences in firms’ network connections, and

evolution of the network over time, impart total firm volatility with cross section and time

series heteroscedasticity.

Our model has three assumptions. First, firms’ growth rates are influenced by the growth

rates of their customers. As a result, the firm-specific shocks propagate through the network

via connected firms. Second, the probability of a customer-supplier link depends on the size

of the supplier so that large firms typically supply to a higher number of customers. Third,

the importance of a customer-supplier link depends on the size of the customer. Large

customers have a stronger connection with their suppliers, presumably because they account

1See also Leahy and Whited (1996), Bloom, Bond, and Van Reenen (2007), Stokey (2012) and the papers
cited therein.
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for a large fraction of their suppliers’ sales. We provide microeconomic evidence for all three

assumptions based on the observed customer-supplier networks among Compustat firms.

In our model, firms are aggregators of their own idiosyncratic shocks and the shocks to

connected firms. The sparsity and granularity of a firm’s customer network, which in turn

depend on the firm size distribution, determine how well a firm diversifies the shocks that it

is exposed to and thus determine its volatility. By connecting the firm size distribution to

network formation, our model generates a rich set of implications for volatility in the cross

section and the time series, which we can test. We study data on firm-level sizes, volatilities,

and customer-supplier linkages, establishing a new set of stylized facts about firm volatility

and confirming the model’s implications.

Firm-level volatilities exhibit a common factor structure where the factor is firm size

dispersion in the economy. In the model, each supplier’s network is a random draw from the

entire population of firms, so that any firm’s customer network inherits similar dispersion

to that of the entire size distribution. An increase in dispersion slows down every firm’s

shock diversification and increases their volatility. In the data, we find that firm volatilities

possess a strong factor structure, and we show that size dispersion explains 25% of the

variation in (realized) firm volatilities, as much as is explained by average volatility, a natural

benchmark.2

The factor structure implies strong time series correlations between moments of the size

and volatility distributions. An increase in the size dispersion translates into higher average

volatility among firms. It also raises the cross section dispersion in volatilities. In the

time series, size dispersion has a 72% correlation with mean firm volatility and 79% with the

dispersion of firm volatility. Our paper is the first to provide an economic explanation for the

factor structure in firm-level volatility by connecting it to firm concentration. A persistent

widening in the firm size dispersion should lead to a persistent rise in mean firm volatility.

We observe such a widening (increase in firm concentration) between the early 1960s and

the late 1990s, providing a new explanation for the trend in mean firm volatility studied by

2Similarly, Engle and Figlewski (2012) document a common factor in option-implied volatilities since
1996, and Barigozzi, Brownlees, Gallo, and Veredas (2010) and Veredas and Luciani (2012) examine the
factor structure in realized volatilities of intra-daily returns since 2001. Bloom, Floetotto, Jaimovich, and
Terry (2012) shows that firm-specific sales growth and productivity show cross-sectional dispersion that
fluctuates with the macroeconomy.
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Campbell et al. (2001).

In the cross-section, differences in volatility across firms arise from two sources: differences

in the number of a customers and differences in customer size dispersion. First, large firms are

less volatile than small firms because they are connected to more customers, which improves

diversification regardless of the size profile of its customer base. This effect also appears

in the volatility factor structure in our model. Smaller firms have larger exposures to the

common volatility factor, implying that small firms have both higher levels of volatility and

higher volatility of volatility. In the data, doubling a firm’s size lowers its volatility by 32%,

and small firms indeed have higher volatility factor exposures, as predicted by the model.

Second, holding the number of connections fixed, a supplier’s customer network is less

diversified if there is more dispersion in the size of its customers. Because customer size

determines the strength of a link, severe customer size disparity means that shocks to the

biggest customers exert an outsized influence on the supplier, which raises the supplier’s

volatility. Differences in customer size disparity arise from probabilistic network formation

– some suppliers will link to a very large (or very small) customer by chance alone. The

data indeed show a strong negative cross-sectional relationship between firm size and firm

volatility and a strong positive correlation between a firm’s “out-Herfindahl,” our measure

of concentration in a firm’s customer network, and its volatility. The dependence of firm

volatility on firm size and firm out-Herfindahl survives the inclusion of other determinants

of volatility previously proposed in the empirical literature, including industry concentration

and competition, R&D intensity, equity ownership composition, firm age, and cohort effects.

Collectively, this evidence supports a network-based explanation of firm volatility.

A calibrated version of our model matches the data not only qualitatively but also quan-

titatively. We target moments and cross-moments of data on firm size, firm volatility, and

inter-firm business linkages.3 A benchmark calibration with strong network effects is able to

account quantitatively for most cross-sectional and aggregate features of the size, volatility,

and linkage distributions. But it overstates the degree of concentration in customer net-

3While we are able to analytically characterize volatility behavior in the large-firm limit, ascertaining
certain other model features necessitates a numerical simulation due to the inherent non-linearity of the
network and its dynamics (exit and entry of firms and persistence in connections). The calibration also
allows us to confront truncation and selection issues we face in the data.
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works and underestimates the cross-sectional dispersion in volatility. An extension of the

model that allows for internal diversification, for example from operating multiple product

lines, is able to match the observed dispersion in volatility and degree of customer network

concentration, while continuing to match the other size and volatility moments. We show

that to match the joint distribution of volatility and size, we need both internal and external

(network) diversification in the model.

The model displays substantial movement in aggregate moments of size and volatility

distributions, despite allowing for thousands of firms, because the granular network intro-

duces strong feedback between the cross-sectional size distribution and firm-level volatility:

even small shocks to size dispersion have large dynamic volatility effects. The data display

similarly large fluctuations as in our model. Without network effects, our model reduces

to a Gibrat model and implies that the cross-sectional size and volatility distributions are

effectively constant over time.

We build upon a rich literature exploring the role of input-output network linkages for

aggregate fluctuations, exemplified by Long and Plosser (1987), Carvalho (2010), Foerster,

Sarte, and Watson (2011), Acemoglu et al. (2012), and Carvalho and Gabaix (2013). Our

model ties the size distribution to network formation, and shows that network connectivity

is crucial for describing not only aggregate volatility, but the entire distribution of firm-level

volatility. We combine the network sparsity insights of Acemoglu et al. (2012) with Gabaix’s

(2011) notion of limited diversification through granularity. The granularity of the network

is related to the idea that a few large firms account for a large part of aggregate output and

hence of aggregate volatility. Our granularity, by operating at the firm level, endogenously

generates firm-level volatilities rather than taking those as given. While consistent with the

economic structure in these papers, our model differs from earlier work by directly specifying

the statistical mechanics of inter-firm linkages. This approach allows us to derive tractable

analytic statements about firm volatility in large economies while still allowing for rich size

and network dynamics.

The rest of the paper is organized as follows. Section 2 sets up the network model and

studies its volatility implications. It also justifies the modeling assumptions based on micro

data on firms’ networks. Section 3 presents macro evidence on the link between the firm size
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and the firm volatility distributions. Section 4 calibrates the model and studies its ability to

match the size, volatility, and network data. The proofs of the theoretical results, auxiliary

empirical evidence, and additional calibration results are relegated to the appendix.

2 A Network Model of Firm Growth and Volatility

We develop a dynamic network model of connections between firms. While the model is

more general, our empirical application leads us to interpret the network as one between

suppliers and customers.

2.1 Firm Growth

Define Si,t as the size of firm i with growth rate as gi,t+1, where

Si,t+1 = Si,t exp(gi,t+1). (1)

In this directed network, supplier i’s growth rates depend on its own idiosyncratic shock and

a weighted average of the growth rates of its customers j:

gi,t+1 = µg + γ
N∑
j=1

wi,j,t gj,t+1 + εi,t+1. (2)

The parameter γ ∈ [0, 1) governs the rate of decay as a shock propagates through the

network. The weight wi,j,t determines how strongly firm i’s growth rate is influenced by the

growth rate of firm j. If i and j are not connected then wi,j,t = 0. By convention, we set

wi,i,t = 0. The full matrix of connection weights is W t = [wi,j,t]. We assume that all rows

of W t sum to one so that its largest eigenvalue equals one. Connections are not symmetric:

firm j can be a customer of i without i being a customer of j.4 Let gt+1 and εt+1 ∼ N (0, σ2
εI)

4As an aside, these growth dynamics impute dynamics to the relative sizes, or shares, of firms that are
similar to those explored by Menzly, Santos, and Veronesi (2004) and Santos and Veronesi (2006). In contrast
to their work, there is no mean reversion built into our shares. Furthermore, only the customer shares in
W t are relevant for the cash flow dynamics of a firm. These shares divide by the sum of all customers not
by the sum of all firms in the economy.
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be the N × 1 vectors of growth rates and shocks, respectively, so that:

gt+1 = µg + γW tgt+1 + εt+1 = (I − γW t)
−1 (µg + εt+1

)
. (3)

We purposely impose stark assumptions on the nature of the underlying innovations:

each firm i experiences i.i.d. growth rate shocks εi,t+1 ∼ N(0, σε). Under this assumption,

all dynamics in the volatility of growth rates arises endogenously.5 In Section 4 we consider

a model extension that allows for heterogeneity in firms’ shock volatilities and find the same

qualitative effects of network structure on firm volatility.

Acemoglu et al. (2012) derive a static version of (3) as the equilibrium outcome in a

multi-sector production economy.6 Theirs is also a directed network, but in their version the

productivity shocks are transferred downstream from suppliers to customers.7 The appendix

explores a version of our model where shocks are propagated downstream from suppliers to

customers. In Section 4, we argue that the data are more supportive of an upstream than a

downstream shock propagation mechanism.8

2.2 Size Effects in Network Structure

So far, the statistical model for firm growth is a general representation of a spatial autore-

gression. The content of the network (spatial autoregression) model is in the specification of

5As in a Gibrat model, the model described here is non-stationary. Our theoretical analysis of firm
volatility is unaffected by this property. In the calibration of Section 4, which includes time series moments,
we introduce firm entry and exit into the model to maintain stationarity. This is a standard mechanism used
in models of the size distribution (de Wit (2005)).

6Theirs is a constant-returns to scale economy populated by a stand-in agent who has Cobb-Douglas
preferences defined over all of the N different commodities produced. Productivity shocks are transferred
downstream from suppliers to customers. In this economy, the weights wk,j , are the input weights of good k
for firm j in the production of commodity j while γ measures the intermediate goods share. This specification
emphasizes upstream supply shocks as the only drivers of firm-level volatility, while our model focuses on
downstream demand shocks as the driver.

7Since we focus on propagation from customer to supplier, a question arises about retail firms whose
customers are households. Because households are not part of the model, this would appear to be a source of
leakage. In the data, we also consider retailers who do not have any customer connections with other firms,
at least not in the standard sense. Our simple model can be extended to include retailers. If markets are
incomplete, then some of the labor income risk that is specific to firms would show up in the consumption
decisions of workers at these firms, which in turn would expose retail firms to the upstream risk.

8Shock transmission in the economy is plausibly bi-directional. We focus on uni-directional transmission
to clearly highlight the network and size mechanisms of interest. Our setup is easily generalized, but at the
cost of analytic tractability.
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the weighting matrix W . We make two key assumptions on the probability and the strength

of connections between customers and suppliers. These assumptions connect the firm size

distribution to the network structure of the economy. We provide micro-economic evidence

for these assumptions in Section 2.6.

The linkage structure at time t is determined by the firm size distribution coming into

period t. The existence of a link between i and j is captured by

bi,j,t =

1 if i connected to j at time t

0 otherwise,

Each element of the connections matrix, Bt = [bi,j,t], is drawn from a Bernoulli distribution

with P (bi,j,t = 1). This connection probability is assumed to be linear in supplier size:

P (bi,j,t = 1) ≡ pi,t =
S̃i,t
Z
N−ζ (for i 6= j), (4)

where S̃i,t = Si,t/E[Si,t] is the relative size of firm i versus the population mean and Z

is a scale constant. While the precise functional form matters quantitatively, the crucial

qualitative assumption is that the probability of a connection depends on the (relative) size

of the supplier, not on the size of the customer. It follows immediately that larger suppliers

have more connections on average. This is the model’s first size effect.9

Equation (4) also builds sparsity into the network. The sparsity parameter ζ ∈ (0, 1)

governs the speed at which the connection probability decreases in N . It implies that the

the number of links in the system diverges as the number of firms goes to infinity, but that

the probability of connecting to any single customer goes to zero. In a large economy, the

expected number of customers (or out-degree) is:

N out
i,t ≈ Npi,t =

S̃i,t
Z
N1−ζ .

The number of linkages grows with the number of firms in the economy, but the rate of

growth is slower when ζ is closer to 1.

9Empirical support of this assumption is discussed in Sections 2.6 and 4 below.
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Conditional on a link existing between supplier i and customer j (bi,j,t = 1), the strength

of that link is linear in customer size:

wi,j,t =
bi,j,tSj,t∑N
k=1 bi,k,tSk,t

, ∀i, j, t. (5)

This weighting scheme assumes that larger customers have a larger impact on a supplier’s

growth rate. This assumption is the second size effect in the network.

2.3 Firm Volatility

Conditional on Wt, the variance-covariance matrix of growth rates gt+1 is given by:

V t

(
gt+1

)
= σ2

ε (I − γW t)
−1 (I − γW ′

t)
−1
. (6)

The vector of firm volatilities is the square root of the diagonal of the variance-covariance

matrix.

The so-called Leontief inverse matrix, (I − γW t)
−1, governs the behavior of firm volatil-

ity. In standard network settings, this inverse is an obstacle to deriving a tractable analytic

characterization of volatility. Our model, in contrast, lends itself to a convenient volatility

representation when the number of firms in the economy becomes large.

Before deriving our main result, it is useful to build intuition for volatility behavior in this

network economy by considering a simplified version of the model. Suppose for a moment

that growth rates follow the process

gt+1 = (I + γW t)
(
µg + εt+1

)
. (7)

In our full network model (2), a supplier’s growth rate is influenced by each customer’s growth

rate, who is in turn influenced by their customers’ growth rates, and so on, embedding a rich

spatial autoregressive structure in firm growth. The simplification in (7) differs from the full

network in that idiosyncratic shocks only propagate one step in the supply chain and then
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die out. In fact, (7) is a first order approximation to (2), because

(I − γW t)
−1 = I + γW t + γ2W 2

t + γ3W 3
t + · · · ≈ I + γW t,

under our maintained assumption that γ ∈ [0, 1). In this system, the variance of firm’s i

growth rate simplifies to:

Vt (gi,t+1) = V

(
γ
∑
j

wi,j,tεj,t+1 + εi,t+1

)
= σ2

ε

(
1 + γ2Hi,t

)
, (8)

where

Hi,t ≡
N∑
j=1

w2
i,j,t

is the Herfindahl index of supplier i’s network of customers. We refer to Hi,t as the customer

Herfindahl or the out-Herfindahl. This derivation shows that, to a first order approximation,

the variance of a firm’s growth rate is determined by its customer Herfindahl Hi,t, the

volatility of the underlying innovations σ2
ε , and the strength of shock transmission in the

network γ.

The higher i’s out-Herfindahl, the more concentrated is its customer network and the

higher is its variance. A supplier’s out-Herfindahl (and hence firm variance) is driven by

two features, the number of customers it has and the amount of dispersion in its customers’

sizes. The supplier is more diversified when it has more customers and when the dispersion

in customer sizes is small. Because all firms, large and small, draw their connections from the

same economy-wide size distribution, their customer networks have equal size dispersion in

expectation. In our model, the key difference in the network structure across suppliers is the

number of customers they have, which depends on the supplier’s size through the Bernoulli

probability function. This commonality in network concentration naturally leads to a factor

structure in firm volatilities, where the factor is the dispersion of the economy-wide firm size

distribution.

Returning to the full network specification in (2), the following results formalize the

preceding intuition in a large N economy. First, we provide a limiting description of each

supplier’s customer Herfindahl. Throughout, we use asymptotic equivalence notation x ∼ y
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to denote that x/y → 1 as N → ∞. All proofs are in Appendix A. Where there is no

ambiguity, we suppress time and/or firm subscripts.

Lemma 1. Consider a sequence of economies indexed by the number of firms N . If Si has

finite variance, then

Hi ∼
1

N (1−ζ)
Z

S̃i

E[S2]

E[S]2
.

In particular, if log(Si) is normal with variance σ2
s , then

Hi ∼
1

N1−ζ
Z

S̃i
exp(σ2

s).

This lemma highlights the common structure in customer Herfindahls across suppliers.

The ratio of the second non-central moment of the size distribution to the squared first mo-

ment captures the degree of concentration in the entire firm size distribution. Economy-wide

firm size concentration affects the customer network concentration of all firms. Differences

in customer Herfindahl across suppliers are inversely related to supplier size, capturing the

model feature that larger firms are connected to more firms on average. Under lognormality,

E[S2]/E[S]2 equals the (exponentiated) cross-sectional standard deviation of log firm size.

The lemma applies more generally to the case where the size distribution has finite variance,

and below we analyze firm volatility decay in the case of power law size distributions with

infinite variance but finite mean.

As described above, Hi is the first order determinant of firm volatility in our model.

The following intermediate lemma allows us to capture higher order network effects that

contribute to a firm’s variance.

Lemma 2. Consider a sequence of economies indexed by the number of firms N . Define the

matrix W̄ as [W̄ ]i,j = S̃j/N . If Si has finite variance, then for q = 2, 3, ...,

[W q]i,j ∼
S̃j
N
.

Furthermore,

[WW̄ ′]i,j ∼
E[S2]

NE[S]2
and [W̄W̄ ′] ∼ E[S2]

NE[S]2
.
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Our main proposition links the variance of a firm to its size and to the concentration of

firm sizes throughout the economy.

Proposition 1. Consider a sequence of economies indexed by the number of firms N . If Si

has finite variance, then the Leontief inverse has limiting behavior described by

(I − γW )−1 ∼ I + γW +
γ2

1− γ
W̄ ,

and firm volatility has limiting behavior described by

V (gi) ∼ σ2
ε

[
1 +

(
γ2

N1−ζ
Z

S̃i
+

2γ3 − γ4

N(1− γ)2

)
E[S2]

E[S]2
+

2γ2

1− γ
S̃i
N

]
.

This proposition highlights the determinants of firm-level growth rate variance in a large

economy. First, firm variance depends on economy-wide firm size dispersion E[S2]/E[S]2,

familiar from Lemma 1. Overall size dispersion acts as a common factor across all volatilities,

since more size dispersion makes every supplier less diversified, and this has ripple effects

through the higher order terms (customers’ customer networks are also less diversified, and

so on). As γ approaches one, these higher order terms become quantitatively important.

Relative firm size, S̃i, appears in two terms. Its primary role is in the first coefficient on

E[S2]/E[S]2. Intuitively, larger firms have a lower exposure to the common size dispersion

factor than do smaller firms because they typically connect to more customers, achieve

better shock diversification, and display lower volatility. Smaller factor exposure also makes

large firms less sensitive to fluctuations the firm size dispersion; that is, they display lower

volatility of volatility.

The firm’s relative size also appears in the numerator of the last term. Shocks to the

largest firms are the most strongly propagated shocks in the model since these firms have the

largest influence on their suppliers. These shocks feed back into large firms’ own volatility

while, in contrast, small firms’ shocks die out relatively quickly in the network. Thus, the

last term in Proposition 1 captures a countervailing increase in volatility for larger firms. In

all of our numerical results, we find that the effect of the first size term dominates.

Finally, the variance of firm variance decays at rate N1−ζ , showing the dominance of Hi’s
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effect on total volatility. The dependence of volatility’s decay rate on ζ captures the effect

of network sparsity. High ζ means that there are relative few linkages compared to the size

of the economy, which slows down the diversification of all firms.

Thus far we have assumed that the firm size distribution has finite variance, thus the slow

volatility decay in Proposition 1 arises only due to network sparsity. Gabaix (2011) empha-

sizes that extreme right skewness of firm sizes can also slow down volatility decay in large

economies. In the next result, we show that the firm-level network structure adds a mecha-

nism to further slow down volatility decay beyond Gabaix’s (2011) granularity mechanism,

which depends on power law behavior of the size distribution.

Proposition 2. Consider a sequence of economies indexed by the number of firms N . If

Si is distributed as a power law with exponent η ∈ (1, 2], then firm variance decays at rate

N (1−ζ)(2−2/η).

In the absence of network effects, power law sizes would imply that firm variance decays

at rate N2−2/η. For any given rate of decay determined by the power law, network sparsity

further lowers the decay rate by ζ.

We have referred to the volatility structure described in Proposition 1 as a factor model.

The next result formally characterizes volatilities comovement when N is large. Because Hi

determines the rate of convergence for firm variance, we may understand how firm variances

covary in a large economy by studying the asymptotic covariance among Hi and Hj.

Proposition 3. Consider a sequence of economies indexed by the number of firms N . If Si

has finite fourth moment (e.g., if Si is a lognormal variable), then the covariance between

Hi and Hj has limiting behavior described by

Cov(Hi, Hj) ∼
1

N1+2(1−ζ)
V (S2)

SiSj

Z2

E[S]2
.

The covariance between V (gi) and V (gj) decays at the same rate.

As the number of firms grows, not only does the level of volatility decay, but so does its

variance and covariance between the volatilities of different firms. Proposition 3 shows that
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comovement among firm variances decays at rate N1+2(1−ζ). Intuitively, covariance is lowest

when both firms are large since large firms have low exposure to overall size concentration.

2.4 Aggregate Volatility

We next characterize the behavior of aggregate volatility. Let St be the vector of sizes, ι

an N -vector of ones, and νt = St/ι
′St the vector of size weights. We define the aggregate

growth rate of the economy as:

ga,t+1 = ν ′tgt+1 = ν ′t (I − γW t)
−1 (µg + εt+1

)
.

The variance of the aggregate growth rate is given by:

Vt(ga,t+1) = σ2
εν
′
t (I − γW t)

−1 (I − γW ′
t)
−1
νt.

A first observation is that variation in W t and St induces heteroscedasticity in aggregate

growth rates, even though all underlying innovations are i.i.d. across firms and over time.

The next proposition shows that our network model drives a wedge between the rates of

decay for aggregate versus firm-level variance.

Proposition 4. Consider a sequence of economies indexed by the number of firms N . If Si

has finite variance, then firm volatility has limiting behavior described by

Vt(ga,t+1) ∼ σ2
ε

(1− γ)2

E[S2]

NE[S]2
.

If Si is distributed as a power law with exponent η ∈ (1, 2], then aggregate variance decays

at rate N2−2/η.

When the variance of firm size is finite, aggregate variance decays at rate 1/N , which

is generally faster than the rate of decay of firm variance. That is, even if the firm size

distribution is lognormal, there is slow volatility decay at the firm level but not at the

aggregate level. For size distributions with infinite variance (but finite mean), aggregate
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variance decays more slowly than 1/N , but remains unaffected by ζ.10

2.5 Residual Volatility

In the literature, idiosyncratic volatility is typically constructed by first removing the ag-

gregate component of growth rates with a statistical procedure such as principal component

analysis, then calculating the volatilities of the residuals. In a granular network model like

ours, such a factor regression approach is misspecified. There is no dimension-reducing com-

mon factor that fully captures growth rate comovement since, by virtue of the network, every

firm’s shock may be systematic. A sign of the misspecification of the factor model is that the

residuals exhibit a volatility factor structure that looks very similar to the factor structure

for total firm volatility. In our empirical analysis below we show that the key features of

total volatilities also exist for volatilities of factor regression residuals.

2.6 Justifying Model Assumptions

Before we turn to the empirical relationship between the firm size and firm volatility distri-

bution, we discuss how customer-supplier network micro-data support our main modeling

assumptions.

Our data for annual firm-level linkages comes from Compustat. It includes the fraction

of a firm’s dollar sales to each of its major customers. Firms are required to supply customer

information in accordance with Financial Accounting Standards Rule No. 131, in which a

major customer is defined as any firm that is responsible for more than 10% of the reporting

seller’s revenue.11 The Compustat data has been carefully linked to CRSP market equity data

by Cohen and Frazzini (2008), which allows us to associate information on firms’ network

connectivity with their market equity value and return volatility.12 The data set covers the

10As shown by Acemoglu et al. (2012), network sparsity may impact aggregate volatility. Our model, by
focusing on size as the key determinant of network formation, combines the aggregate volatility effects of
network sparsity and granularity into a single mechanism that acts through the power law parameter η.

11Firms have discretion in reporting relationships with customers that account for less than 10% of their
sales, and this is occasionally observed. In our data, 23% of firms report at least one customer that accounts
for less that 10% of its sales.

12Cohen and Frazzini (2008) used the same data to show that news about business partners does not
immediately get reflected into stock prices. Atalay et al. (2011) also use Compustat sales linkage data to
develop a model of customer-supplier networks.
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period 1980-2009, and includes 48,839 customer-supplier-year observations. Appendix B.1

provides more details and summary statistics on the network data.

The first size assumption in the model is that suppliers have stronger connections with

their larger customers. This is a prominent feature of the data. Specifically, for each supplier

i in the Compustat data, we calculate the correlation between its customers’ total sales (Sj,t)

and the fraction of i’s revenue that is due to each customer (wi,j,t). We then average across all

suppliers in a given year, and finally average across all years. We also compute a t-statistic

equal to the ratio of the time series mean of the correlation to its time-series standard

deviation. In an average year, that correlation is 20% (t = 3.6). The correlation is 19%

when we limit ourselves to only use links that exceed 10% of sales.

Our second size assumption is that larger suppliers are connected to more customers

on average (higher Ni). The Compustat data cannot speak directly to this assumption

due to the truncation of all linkages whose weights fall below 10%.13 To address this, we

simulate a calibrated version of our model and estimate the correlation between supplier size

and out-degree in both the full simulated sample and the simulated sample while imposing

the 10% weight truncation. We find that truncation produces a downward bias in the

correlation estimate of 19 to 27 percentage points depending on the calibration. Since the

measured correlation in the actual (truncated) data is 3%, the bias-adjusted estimate is 22%

to 30% based on our model. The data also support our assumption that the probability of

a connection is independent of customer size (the truncation-adjusted correlation between

customer size and number of suppliers is 4% in the data). We discuss these points further

in Section 4.

Inter-industry trade data from the Bureau of Economic Analysis does not suffer trunca-

tion, so for comparison we test the correlation between size and out-degree at the industry

level.14 We find a 61% correlation between the size of a supplier industry and the number of

industries that it sells to. We also find a 37% correlation between the size of the customer

industry Sj,t and importance of the link wi,j,t.

13For example, a small firm that has a single customer accounting for 100% of its revenue can show up as
having more links than a firm with 11 equally important customers with weights of 9.1% due to truncation.

14We use the BEA’s input-output tables for the 65-industry breakdown of the US economy between 1998
and 2011.
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3 Macro Evidence on Size Dispersion and Volatility

This section documents new stylized facts about the joint evolution of the firm size and firm

volatility distributions.

3.1 Data

We conduct our analysis using stock market data from CRSP over the period 1926–2010

and using cash flow data from CRSP/Compustat over 1952–2010. We consider market and

fundamental measures of firm size and firm volatility calculated at the annual frequency.

For size, we use equity market value at the end of the calendar year or total sales within

the calendar year.15 Market volatility is defined as the standard deviation of daily stock

returns during the calendar year. Fundamental volatility in year t is defined as the standard

deviation of quarterly sales growth (over the same quarter the previous year) within calendar

years t to t+ 4.16

In the data, size and volatility are well approximated by a lognormal distribution.17 As a

result, the dynamics of each distribution may be summarized with two moments: the cross

section mean and standard deviation of the log quantities. We now examine the dynamics

of these moments in detail.

3.2 Comovement of Size and Volatility Distributions

Figure 1 plots the cross-sectional average of log firm variance against lagged firm size dis-

persion, where size is based on market capitalization and volatility based on stock returns.

The correlation between average volatility and the market-based measure of size dispersion is

71.7%. Mean firm volatility experienced several large swings in the past century, especially

in the 1920s and 1930s and again in the last two decades of the sample. These changes

are preceded by similar dynamics in the cross-sectional dispersion of firm size. The close

15All variables in our analysis are deflated by the consumer price index.
16We also consider fundamental volatility measured by the standard deviation of quarterly sales growth

within a single calendar year. The one and five year fundamental volatility estimates are qualitatively
identical, though the one year measure is noisier because it uses only four observations.

17Detailed distributional statistics for the CRSP/Compustat sample are available upon request.
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Figure 1: Average Firm Volatility and Dispersion in Firm Size
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Notes: The figure plots the cross-sectional dispersion of log firm size, based on market equity values, and the
cross-sectional mean of the log variance distribution, where the variance is measured based on daily stock
returns. All series are rescaled for the figure to have mean zero and variance one.

association between mean volatility and size dispersion is predicted by Proposition 1.

Proposition 1 links not only the mean volatility, but also dispersion in firms’ volatility, to

dispersion of log firm size. Figure 2 shows a strong association between firm volatility and

firm size dispersion, based on the market measures. The correlation between the two time-

series is 79.3%. Appendix B.2 shows that the positive correlation between size dispersion and

average volatility holds both at low and business cycle frequencies, based on HP filter trend

and cycle components of these time series. Appendix B.3 reports formal Granger causality

tests showing that size dispersion leads mean and dispersion of the volatility distribution.

These tests are useful for establishing that the time-series connection is statistically large

and not driven by trends in the data.

It is important to note that the same relationship between the moments of the firm

size and firm volatility distributions exists for our sales-based measures. Figure 3 shows a

correlation of 85.5% between mean volatility and lagged firm size dispersion. Because the

sales-based data only start in the 1960s, their dynamics are more affected by the persistent

increase in firm size dispersion and volatility that took place between the 1960s and the 1990s.
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Figure 2: Dispersion in Volatility and Dispersion in Firm Size
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Notes: The figure plots the cross-sectional dispersion of log firm size, measured based on market equity
values, and the cross-sectional dispersion of the log variance distribution, where the variance is measured
based on daily stock returns. All series are rescaled for the figure to have mean zero and variance one.

The correlation between the dispersion of volatility and the dispersion of size is 72.4% for the

sales-based measure, consistent with the market-based evidence. Average return volatility

and average sales growth volatility have an annual time series correlation of 64%, while the

two volatility dispersion measures have a correlation of 49%.18 This demonstrates a high

degree of similarity between market volatilities and its (more coarsely measured) fundamental

counterpart. Any explanation of these volatility facts, including financial explanations, must

confront this similarity.

To summarize, we observe a strong positive association of firm size dispersion with average

firm volatility and dispersion in firm volatility, as predicted by the model.

3.3 Sample Composition

Davis et al. (2007) show that, starting in the 1980s, firms go public earlier, at a stage in

their life-cycle where they are more volatile. This fact does not appear to be driving the

18Using a different measure of volatility, (Bloom, Floetotto, Jaimovich, and Terry 2012) also find a strong
positive correlation of 63% (annual) and 47% (quarterly) between stock return volatility and sales growth
volatility of publicly listed firms.
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Figure 3: Average Firm Volatility and Dispersion in Firm Size
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Notes: The figure plots the cross-sectional dispersion of log firm size, based on firm sales, and the cross-
sectional mean of the log variance distribution, where the variance is measured based on 20 quarters of
growth in firm sales. All series are rescaled for the figure to have mean zero and variance one.

comovement between size and volatility shown in Section 3.2. High correlation between

firm size dispersion and the moments of the volatility distribution holds both among young

firms and firms that have been publicly listed for decades. It holds both before and after

1980. It holds within all industries and for the NASDAQ subsample (a large fraction of

post-1980 IPOs were on NASDAQ and/or in the technology sector). Table 1 demonstrates

that the positive correlations between firm size dispersion and both the mean and dispersion

of firm variance are robust to sample composition. These correlations hold across 10 broad

industries, across size terciles, for NYSE firms and non-NYSE firms, for firms that have

been publicly listed at least 50 years and for random samples of 500 firms. Hence, these

correlations unlikely to be driven by changes in the nature of publicly listed firms.

We also find that the dynamics of both firm size dispersion and firm volatility dispersion

are similar for publicly-listed and privately-held firms. We use three data sets to corroborate

this claim. First, using Census data, we document that the dispersion in the log size distribu-

tion, where size is measured by number of employees, displays similar dynamics for publicly

listed and privately-held firms. The two series have a correlation of 65%. Second, using data
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Table 1: Composition

# Firms ρ(σsubset,S,t, σS,t) ρ(µσ,t, σS,t−1) ρ(σσ,t, σS,t−1)

All stocks 3004 - 71.7% 79.3%

By sample period / exchange

NYSE only 1158 64.2% 62.1% 77.6%

Non-NYSE 3018 89.9% 58.1% 40.7%

At least 50 yrs 347 78.1% 44.5% 62.7%

Random 500 500 90.5% 64.9% 80.7%

By size

Smallest third 1000 67.7% 71.7% 51.9%

Middle third 1000 87.7% 61.6% 69.8%

Largest third 1003 86.8% 55.9% 73.4%

By industry

Consumer Non-Dur. 248 91.4% 64.4% 72.3%

Consumer Durables 107 87.6% 33.4% 74.9%

Manufacturing 528 91.9% 53.1% 79.8%

Energy 140 72.9% 68.4% 67.9%

Technology 413 88.1% 85.2% 58.2%

Telecom 55 23.6% 14.3% 10.6%

Retail 310 86.5% 69.0% 69.8%

Healthcare 188 69.5% 69.4% 50.6%

Utilities 112 67.8% 19.7% 64.8%

Other 904 82.8% 63.3% 65.7%

Notes: Annual data 1926-2010. We use the market based volatility measure constructed from stock returns and the market-
based measure of size (market equity). The first column reports the time series average of the cross section number of firms.
The second column reports the time-series correlation between the size dispersion of the sub-cross section and the dispersion of
the full cross section. Column three reports the correlation between average log volatility (µσ,t) and lagged log size dispersion
(σS,t−1) and column four reports the correlation between dispersion in log volatility (σσ,t) and lagged log size dispersion.

provided by Bloom et al. (2012), we find a strong positive correlation between stock return

and sales growth volatility of publicly listed firms and the volatility of log productivity and

of output growth for all public and private firms in manufacturing. Sales growth volatility

(stock return volatility) has a 49% (33%) correlation with log TFP volatility 38% (52%) cor-

relation with output growth volatility. Third, using data from Compustat on privately-held

firms, we again find strong positive correlations between the time series of size dispersion,

mean volatility, and volatility dispersion for public and for private firms. The correlations
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range from 55% to 91%. Appendix B.4 provides data sources and detailed results.

Our results focus on data for publicly-listed firms because these are the firms for which

we observe customer-supplier network relationships. The key stylized facts linking the size

and volatility distributions hold broadly and are not an artefact of public firm selection.

3.4 Volatility Factor Structure

Recent research has documented a puzzling degree of common variation in the panel of firm-

level volatilities. Kelly, Lustig, and Nieuwerburgh (2012) show that firm-level stock return

volatilities share a single common factor that explains roughly 35% of the variation in log

volatilities for the entire panel of CRSP stocks. This R2 is nearly twice as high for the

100 Fama-French portfolios. They also show that this strong factor structure is not only

a feature of return volatilities, but also of sales growth volatilities. The puzzling aspect of

this result is that the factor structure remains nearly completely intact after removing all

common variation in returns or sales growth rates. Hence, common volatility dynamics are

unlikely to be driven by an omitted common return or sales growth factor.

The granular network model predicts a high degree of comovement in firm volatility.

Proposition 1 shows an approximate factor structure among the volatilities of all firms, and

suggests that concentration of the lagged economy-wide size distribution is the appropri-

ate factor. Furthermore, as discussed in Section 2.5, if the true data generating process

is a network model, then factor model residual volatilities will possess a similar degree of

comovement as total volatilities, despite residual growth rates themselves being nearly un-

correlated.

Panel A of Table 2 shows results of panel volatility regressions for three different factor

models. The left three columns use the volatility of total returns and total sales growth rates,

while the right three columns use residual volatilities. Residual volatilities are calculated in a

one factor model regression of stock returns (sales growth rates) on the value-weighted market

return (sales-weighted average growth rate). In both cases, residuals have average pairwise

correlations that are below 2% in absolute value, despite the original series having average

correlations over 25% on average. Columns (1) and (4) consider the dispersion of lagged

log market-based firm size as a factor. Columns (2) and (5) consider the lagged weighted-
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average volatility. This lagged cross-sectional average volatility is a natural benchmark for

factor model comparison because it is essentially a first principal component of volatilities

and because the lag maintains a comparable timing with the conditioning factor implied

by our model. The third column instead uses the contemporaneous average volatility as a

factor. Because it uses finer conditioning information, it can be considered an upper bound

on the explanatory power of a single factor. We report panel R2 values based on each factor.

Lagged size dispersion has the same degree of explanatory power as lagged average volatil-

ity. Both factors capture about 25% of the panel variation in return volatility. The contem-

poraneous mean volatility explains closer to 40% of the variation. The results for sales-based

volatility are similar: our size dispersion factor explains about 22% of the panel variation,

close to the 23% and 24% for the lagged and contemporaneous average volatility factor. We

find the same results using volatilities of factor model residuals.

The model also predicts that larger firms have lower loadings on the size dispersion factor,

which lowers the level of their volatilities relative to small firms, and also lowers their time-

series volatility of volatility. Panel B of Table 2 shows the loading of firm volatility on each

factor, averaged within each quintile of the firm size distribution. Small firms have loadings

that are 50% larger on the factor than large firms. Panel C shows that the common factor

explains a larger share of the volatility dynamics of small firms than that of large firms.

Large firms have lower levels of volatility and also less variation in volatility. Table 2 is

consistent with the model’s prediction that dispersion in firm sizes predicts the entire panel

of firm-level volatilities.

3.5 Determinants of Firm-level Volatility

A large literature has examined the determinants of firm level volatility on the basis of firm

characteristics, including Black (1976) who proposed that differences in leverage drive het-

erogeneity in firm volatility, Comin and Philippon (2006) who argue for industry competition

and R&D intensity, Davis et al. (2007) who emphasize age effects, and Brandt et al. (2010)

who argue that institutional ownership is a key driver of volatility. Our model predicts

a negative correlation between volatility and firm size and a positive correlation between

volatility and customer network concentration (out-Herfindahl).

23



Table 2: R2 of Volatility Factor Models

Total Volatility Residual Volatility

(10 (2) (3) (4) (5) (6)

Factors Factors

σS,t−1 µσ,t−1 µσ,t σS,t−1 µσ,t−1 µσ,t

Panel A: Factor Model R2, All Firms

Return Vol. 24.4 25.9 39.3 24.7 26.5 37.5

Sales Gr. Vol. 21.8 23.4 24.3 21.4 25.8 27.8

Panel B: Return Volatility Loadings by Size Quintile

Q1 1.25 1.09 1.18 1.32 1.10 1.19

Q5 0.80 0.65 0.84 0.81 0.55 0.71

Panel C: Return Volatility R2 by Size Quintile

Q1 47.9 76.5 90.9 52.6 77.2 90.6

Q5 37.7 53.7 87.2 48.9 49.2 79.1

Notes: The table reports factor model estimates for the panel of firm-year volatility observations. In Panel
A, total volatility is measured as standard deviation of daily returns within the calendar year, and residual
volatility is estimated from daily regressions of firm returns on the value-weighted market portfolio within
the calendar year. In Panel B, total volatility in year t is measured as standard deviation of quarterly
observations of year-on-year sales growth for each stock in calendar years t to t + 4. Residual volatility is
measured from regressions of firms sales growth on the sales-weighted average growth rate for all firms. All
volatility factor regressions take the form log σi,t = ai + bifactort+ ei,t. We consider three different volatility
factors. The first, motivated by our network model, is the lagged cross section standard deviation of log
market equity, σS,t−1. The second and third factors we consider are the lagged and contemporaneous cross
section average log volatility, µσ,t−1 and µσ,t. We report the pooled factor model R2 in percent.

Table 3 reports panel regressions of firm-level log annual return volatility on size and out-

Herfindahl, controlling for a range of firm characteristics including log age, leverage, industry

concentration, institutional holdings, and industry and cohort fixed effects.19 Consistent with

our model, we find that the two most important determinants of volatility are size and out-

Herfindahl. Doubling the size of a firm decreases its volatility by between 12% and 16%.

An increase of customer Herfindahl from zero to one increases volatility by 88% without

controlling for size; the effect is 17% when we control for size. Note that in our model

size and network concentration convey similar information since size determines network

structure. Within our network model, a supplier’s size and its customer Herfindahl are

19Cohorts are defined by the year in which a firm first appears in the CRSP/Compustat data set.
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strongly negatively correlated in the cross-section. Given that concentration in the sales

network is measured with substantial noise, it is likely that size captures an important part

of the true network concentration effect. Nevertheless, the table provides strong evidence

that network concentration matters separately for firm volatility and survives the inclusion

of other well-known volatility determinants such as firm age.

When we replace the out-Herfindahl (concentration of the customer network) with the in-

Herfindahl (concentration of the supplier network) in this multivariate regression, network

concentration is no longer a significant determinant of firm-level volatility (untabulated).

This fact supports the upstream transmission of shocks we assume in our network model.

3.6 Rise in Firm-level Volatility

In an influential paper, Campbell et al. (2001) highlight the rise in firm-level volatility

among publicly traded firms between the 1960s and 1990s. Indeed, our data confirm that

the volatility of firm-level stock returns has increased from an average of 26% per year in

the 1950s to 63% per year since 1990. This increase is also present in volatilities of residuals

from a factor model for returns. The increase in total and residual firm volatility has puzzled

financial economists, who have offered both “real” and “financial” explanations. Our stylized

facts about the joint distribution of volatility and size, which manifest themselves similarly

in both fundamental and market volatility measures, seem to point in the direction of a real

explanation rather than a financial one.

Our model predicts that average volatility should trend upward if size dispersion is doing

the same. We find that accounting for changes in the size distribution nullifies the volatility

trends of the 1950-2000 sample highlighted by Campbell et al. (2001). A regression of mean

firm variance on our market-based measure of size dispersion (the cross-sectional dispersion

in log market equity) has an R2 of 51.3%. There is no anomalous trend in average firm

volatility in the post-war era after accounting for movements in the size distribution.
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4 Joint Dynamics of Size and Volatility Distributions

Section 3 documents a strong statistical association between the distributions of size and

volatility that matches the qualitative predictions of our model. In this section we ask

whether our model can provide a successful quantitative description of the joint distribu-

tion of data on firm size, firm volatility, and inter-firm network linkages. In addition, the

calibration allows us to address certain limitations that we face in our data, such as biases

arising from public firm selection or truncation of weights below 10%. It also allows us to

add further realism to the model by building in entry and exit and introducing persistence

in connections (each of these features introduce challenges for an analytical description of

firm volatility). The model starts from an initial firm size distribution, but both the firm

size and firm volatility distributions evolve endogenously thereafter.

We show that our simple model with purely homoscedastic shocks goes a long way towards

matching the cross-sectional dispersion in firm size and volatility as well as matching the

extent of time variation in the aggregate moments of size and volatility. The limitations

of the model are also informative: the benchmark version requires more concentration in

customer networks than we see in the data in order to fully match the volatility cross section

and the sensitivity of firm volatility to size. Therefore, we also study a second model that

allows for internal diversification within the boundaries of the firm, compared to the external

diversification that we model through the network.

4.1 Calibration

4.1.1 Benchmark Model with Only External Diversification

We start by choosing the parameters listed in Table 4 for our benchmark model, which we

refer to as M1.

Size and Volatility Parameters The fundamental volatility of the innovations σε is set to

0.22 and firm growth rate µg equals zero. The former allows us to match mean firm volatility,

while the latter corresponds to the full-sample growth rate in real market capitalization. The

model is initialized with an N × 1 firm size distribution S0, where each Si,0 is drawn from
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a lognormal distribution with mean µs0 = 10.20 and standard deviation σs0 = 1.06. These

numbers are chosen to match the annual cross-sectional moments of the size distribution

averaged over all years in our sample.

In each period, a fraction δ of firms die randomly. Each dead firm is replaced by a new

firm drawn from the initial firm size distribution.20 These rules for the connection dynamics

and firms’ birth and death completely specify the network evolution and the growth rate

process in (2). The exogenous firm destruction rate δ is set to 5%, close to the time-series

average firm exit rate in our sample of 4.2%.

Network Parameters The parameter γ govern the rate at which idiosyncratic shocks

decay as they propagate through the network. The closer γ is to one, the more important

higher-order network effects are in determining firms’ growth rates. We set γ = 0.95 to

match dispersion of firm volatility as best as possible.21

The linkage structure at time 0 is determined by the initial firm size distribution. Each

element of the connections matrix B0 is drawn from a Bernoulli distribution with P (bi,j,0 =

1) = pi,0 as in (4). The probability of forming a supplier-customer connection features the

parameter Z, which governs the baseline likelihood of a connection for a firm i, as well as

the parameter ζ, which governs how fast that probability decays with the number of firms

N . We set Z = 1.60 and ζ = 0.8 which implies an expected out-degree of three for a firm of

average size. The parameter ζ is chosen close to one so that the expected out-degree grows

with N , but at a slower rate.

To induce persistence in links, we modify linkage probabilities to give suppliers a relatively

high probability of reconnecting to its customers from the previous period. If firm i did not

sell to customer j in period t− 1, then the probability it does so at time t is simply given by

equation (4). If j was a customer of i at t − 1, then the probability that j continues to be

i’s customer is min {pi,j,t + κ, 1}. Thus, κ governs the persistence of connections. We set κ

20We have also analyzed versions of the model where there is additional endogenous exit and where new
firms are drawn from the lower half of the initial size distribution. Both features have little qualitative effect
on our results.

21A spatial autoregression of supplier growth rates on the weighted average growth rate of its Compustat
customers results in a point estimate for γ of at least 0.90 across a range of specifications. This provides
direct evidence on the plausibility of this parameter value.
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Table 4: Model Parameters

M1 M2

Panel A: Size and Volatility Parameters

σε Fundamental shock volatility 0.22 0.40

µg Exogenous firm growth rate 0.00 0.00

µs Mean of initial log size distribution 10.2 10.2

σs Standard deviation of initial log size distribution 1.06 1.06

δ Exogenous firm death rate 0.05 0.05

λ Governs the internal diversification effect 0.00 0.90

Panel B: Network Parameters

γ Governs the network propogation effect 0.95 0.95

Z Governs the probability of new connections 1.60 0.46

ζ Governs the linkage sparsity effect 0.80 0.80

κ Governs persistence in connections 0.50 0.50

ψ Governs the sensitivity of connection weight to customer size 1.00 0.10

equal to 0.5 to match the observed 54% time-series average death rate of truncated links.22

4.1.2 Extended Model with Internal and External Diversification

We consider an extended model, M2, that allows for internal diversification effects by having

volatility of a firm’s growth rate innovation depend negatively on firm size:

σ2
ε,t = σ2

0 − λ
logSt − E[log(S)]

E[log(S)]
, (9)

where σ2
0 plays the role of σ2

ε in the benchmark model and the new coefficient λ governs

the semi-elasticity of fundamental firm variance with respect to firm size. One motivation

for why large firms witness less volatile shocks is internal diversification: when two stand-

alone firms merge, the new firm is larger and less volatile because the businesses are not

perfectly correlated with one another. We choose σ2
0 = 0.40 and λ = 0.90 to match the

cross-sectional mean and standard deviation of the firm volatility distribution, holding fixed

all other parameters.

22In our benchmark model the average death rate of truncated links is 57% whereas the average death
rate of untruncated links is 46%.
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The extended model also changes the form of the weighting function wi,j,t, which governs

the importance of customer j in supplier i’s network, by introducing the curvature parameter

ψ:

wi,j,t =
bi,j,tS

ψ
j,t∑N

k=1 bi,k,tS
ψ
k,t

. (10)

By setting ψ = 0.1, we make the importance of a given customer less steep in customer size.

We lower Z from its benchmark value of 1.60 to 0.46, increasing the expected number of

connections for a firm of average size from 3 to 10.

4.2 Simulation Procedure

We simulate our model for 2,000 firms and 1,300 periods (years). We discard the first

300 observations to let the network settle down to its long run distribution, and compute

model statistics by averaging over the last 1,000 years. In each period, we report moments

based on the sample of the largest 1,000 firms. We focus on the largest firms to account

for selection: our Compustat sample is the subset of public firms, which are typically the

largest firms in the economy, and these firms are connected to a large number of unobserved

smaller firms. Our choice of a total number of N = 2, 000 firms is dictated by computational

considerations.23

The number of public firms in our data sample fluctuates over time, but our calibration

considers a constant sample of 1,000 public firms. To further improve comparability between

the model and data, we focus on the top 33% of Compustat firms by size, which in our data

contains 1,000 firms on average. For completeness, we also report the empirical moments for

the entire distribution of public firms (about 3,000 firms on average).

Our simulated model is well suited to deal with truncation. We implement the truncation

inside the model to match the truncation of the data. That is, we treat wi,j,t as unobserved

whenever wi,j,t is below 10% in the simulation. Since we can observe both truncated and

untruncated moments of the model as calibrated to the data, we are able to make indirect

inferences about the behavior of the full, untruncated economy.

23The same random number generator seeds are used for each model so that, when comparing models,
differences in results are due only to differences in parameters rather than differences in random shock draws.
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Finally, in order to compare variance moments in the model and data, we take into

account the fact that empirical variances are estimated with noise.24

4.3 Calibration Targets and Simulation Results

Below, we outline the features of the observed size, volatility, and network data that we

target in our calibration and discuss how well the benchmark model fits them.

4.3.1 Size Distribution

Table 5 reports the target moments of the cross-sectional log size distribution. All reported

moments are time-series averages over the 1926 to 2010 sample for size and volatility data,

and over 1980 to 2010 for sales network data. The first column reports moments for the full

cross section of firms observed in Compustat. The second column reports results for the top

33% of Compustat firms by size in each year. Column (2) is the main column of interest in

the data. For example, 11.63 is the average log firm size of the large-firm cross section (this

is naturally higher than the 9.61 mean for the full Compustat sample). The dispersion of

the log size distribution is 1.06 for the top-33% group and 1.79 for the full sample. As can

be seen from column (3), the benchmark model (M1) matches the main moments of the firm

size distribution. It matches the cross section mean and dispersion in size exactly, by virtue

of the calibration. The other moments of the size distribution constitute over-identifying

restrictions. The inter-quartile range for log firm size is [10.79,12.25], versus [10.78,12.25]

in the top-33% sample. At both extremes of the size distribution, the model also compares

favorably to the data. Since the size distribution evolves endogenously, the network effects

are crucial to generate enough heterogeneity in firm size. Firms with well-diversified customer

networks are better diversified and have lower volatility, which limits the variance of their

growth rate and hence their size next period. On the other hand, firms with concentrated

customer networks can increase or decrease in size by a lot between periods.

Panel B reports time series properties of the size distribution. The first two rows show

24We report “estimated” variance moments in the model, which we compute as log(V̂ art[gt+1]) =
log(V art[gt+1]) + et+1, where e ∼ N (0, σ2

e) and σe is the time series average of the cross-sectional stan-
dard deviation of log(V art[gt+1]). Our results are qualitatively insensitive to the choice of σe.
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that size dispersion has high variability over time and is highly persistent. Its time-series

standard deviation is 14% for the top-33% firms and 24% for all firms. The third row shows

that the cross-sectional standard deviation of size growth (log size changes) is also volatile

over time. The time series standard deviation is 15% for all firms and 11% for the top-

33% firms. These results confirm that the size distribution moves around considerably over

time. In the benchmark model, size dispersion also moves around substantially over time

and is highly persistent. The model produces the same high time-series variability in the

size dispersion as observed in the data (19% compared to 14% in column (2) and 24% in

column (1)), but understates the dispersion in growth rates (5% versus 11% in column (2)

and 15% in column (1)). The network structure is crucial for generating such a high degree

of time series variation in the size distribution. Shutting down the network effects in this

calibration (setting γ = 0) reduces aggregate size distribution dynamics to essentially zero.

4.3.2 Volatility Distribution

Table 6 reports moments for distribution of log variance. Columns (1) and (2) report market-

based log variance while columns (3) and (4) report sales-based log variance. Because volatil-

ities (standard deviations in levels) are more intuitive than log variances, we exponentiate

the moments of log variance and then take their square root. All reported moments are

time-series averages unless explicitly mentioned otherwise. Panel A shows that average

market-based volatility is 30% per year for the large-firm sample and 41% per year for the

full cross-section. Average sales-based volatility is 24% for the large-firm sample and 30%

for the full sample. The range of return-based (sales-based) volatilities goes from 17% (8%)

at the 5th percentile to 54% (77%) at the 95th percentile for the latter group. The cross-

sectional dispersion in return volatility is 73% in column (2) and 97% in the full cross section

reported in column (1). Sales-based volatility has even larger dispersion of 152% and 142%

in columns (3) and (4), respectively (in part because sales-based volatility is measured with

more noise).

Column (5) of Table 6 shows that model M1 generates high average firm volatility of

37%, in between the return volatility in the full sample and that in the top-33% sample,

and is capable of generating a wide range of firm volatility. The cross-sectional dispersion
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Table 5: Firm Size Distribution Target Moments

All Top-33% M1 M2

Panel A: Cross-sectional Moments of Log Size

Avg 9.61 11.63 11.63 12.03

SD 1.79 1.06 1.07 1.03

5% 6.86 10.38 10.32 10.69

10% 7.39 10.47 10.44 10.82

25% 8.33 10.78 10.79 11.19

Med 9.48 11.39 11.42 11.86

75% 10.77 12.25 12.25 12.71

90% 12.05 13.10 13.10 13.48

95% 12.76 13.64 13.68 13.92

Panel B: Time Series Properties of Size Distribution

SD of σS,t 0.24 0.14 0.19 0.44

AR(1) σS,t 0.947 0.939 0.995 0.998

SD of σg,t 0.15 0.11 0.05 0.16

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first column reports the full cross section of firms . The second column reports results for the top-33%
of firms in each year. Column (3) reports the corresponding moments for the benchmark model M1. Column
(4) reports the moments for the extended model M2. Panel A reports moments of the log size distribution,
where size is defined in the data as market equity. Panel B reports the time-series standard deviation and
time-series persistence of size dispersion σS,t, defined as the cross-sectional standard deviation of log size,
and the time-series standard deviation of the cross section standard deviation of log growth rates σg,t.

in volatility is 45%, compared to 73% for the return-based measure in column (2). The

model matches the 90th and 95th percentiles of volatility, but overestimates volatility on the

low end of the distribution. The least volatile firms have a volatility of 26% in the model,

but only 17% in the return data. Network effects are again crucial in generating dispersion

in volatility outcomes. For γ = 0, all firms’ volatilities would be identical. So, while the

benchmark model cannot generate all of the observed dispersion in firm volatility, it can

generate a substantial share of it and that is entirely due to the network effects.

In Panel B we compute the cross-sectional correlation between log size at time t and log

variance at time t+ 1 for each year t, then report the average across all years. Similarly, the

second row reports the slope coefficient (beta) of a cross-sectional regression of log variance

33



Table 6: Firm Volatility Distribution Target Moments

All Top-33% All Top-33% M1 M2
Returns Returns Sales Sales

Panel A: Cross-Sectional Moments of Firm Volatility

Avg 0.41 0.30 0.30 0.24 0.37 0.36
SD 0.97 0.73 1.52 1.42 0.45 0.71
5% 0.19 0.17 0.09 0.08 0.26 0.20
10% 0.22 0.19 0.11 0.10 0.28 0.23
25% 0.29 0.24 0.17 0.14 0.31 0.28
Med 0.40 0.30 0.29 0.23 0.36 0.36
75% 0.56 0.38 0.49 0.38 0.42 0.46
90% 0.76 0.48 0.78 0.60 0.49 0.57
95% 0.91 0.54 1.07 0.77 0.54 0.65

Panel B: Cross-Sectional Co-moments of Size and Volatility

Corr(St, Vt+1) −0.58 −0.33 −0.34 −0.18 −0.42 −0.62
β(St, Vt+1) −0.32 −0.23 −0.28 −0.22 −0.18 −0.46

Panel C: Time Series Co-moments of Size and Volatility

SD of µσ,t 0.69 0.64 0.46 0.42 0.20 0.52
SD of σσ,t 0.18 0.12 0.13 0.13 0.05 0.11
Corr(σS,t, µσ,t) 0.72 0.55 0.53 0.51 0.95 0.90
Corr(σS,t, σσ,t) 0.79 0.76 0.60 0.38 0.77 0.91
SD of gagg,t 0.21 0.20 0.21 0.20 0.20 0.23

Notes: All reported moments in Panels A and B are time-series averages of the listed year-by-year cross
sectional moments (cross section average, standard deviation, and percentiles) for the sample 1926–2010.
The first and third columns report return volatility and sales growth volatility, respectively, for the full
cross section of firms. The second and fourth columns report results for the largest 33% of firms by market
capitalization in each year. Annual variances in Columns (1) and (2) are calculated from daily stock return
data, while variances in columns (3) and (4) are based on 20 quarters of sales growth rates (in the current
and the next four years). Moments are computed based on the log variance distribution, but are expressed
as volatilities in levels for exposition. That is, we exponentiate each moment of the log distribution and take
the square root. Column (5) reports the corresponding moments for the benchmark model M1. Column (6)
reports the moments for the extended model M2. Log variances in the model are constructed with added
estimation noise to make them comparable to the moments in the data.

at time t + 1 on a constant and log size at time t. Both are strongly negative in the data

showing that large firms have lower volatility over the next period. The benchmark model

generates correlation of −42% between size and volatility at the firm level, splitting the

correlations of −33% and −58% in the two data samples. The slope of the relationship

between variance and size is slightly smaller than that in the data (−18% versus −23% for
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the largest firms). Given i.i.d. shocks, the negative correlation arises endogenously from the

network effect: smaller firms have fewer connections, hence a more concentrated network of

customers, and higher volatility.

Panel C reports time series properties of aggregate moments of the volatility distribution

and the joint size-volatility distribution. The first row shows that the time-series standard

deviation of average firm variance is 64% in the top-33% sample and 69% in the full sample.

Average variance is highly variable over time. The second row shows that the cross-sectional

dispersion of variance also moves substantially over time in both samples and for both ways

of measuring volatility. The time series standard deviation is 12% in the top-33% sample.

The model also generates substantial variability over time in the cross-sectional mean of

firm variance (20%) and in its dispersion (5%). The third and fourth rows report two key

moments in our paper (see Figures 1 and 2). First, the time-series correlation between size

dispersion at t and mean volatility at time t+1 are strongly positively correlated in the data

(72% in the full sample and 55% in the large-firm sample) as well as in the model (95%).

Second, size dispersion is strongly positively correlated with volatility dispersion in the data

(79% in the full sample and 76% in the large-firm sample) as well as in the model (77%).

The last row reports the volatility of aggregate growth, computed as the volatility of the size-

weighted average of the relevant firm sample, which is 21% for all public firms and 20% for

the top-33% sample. It also is 20% in the model. The model produces substantial time series

volatility of the cross section moments, though it is somewhat understated in some cases. All

fluctuations in the volatility distribution rely crucially on the network structure of the model.

As with the size distribution, shutting down network effects in the simulations produces a

volatility distribution whose moments are nearly constant over time. Thus, our model with

only i.i.d. homoscedastic shocks endogenously generates periods with more uncertainty and

periods with less uncertainty. “High uncertainty” periods are associated with a high level of

concentration in the firm size distribution.

Finally, we re-estimate the volatility factor regressions of Table 2 on simulated data from

the model. The corresponding R2 statistics for panel regressions of total volatility are 36%,

37%, and 40% for the three factors considered in that table (from left to right). These

numbers are quite close to their empirical counterparts of 24%, 26%, and 39%. Thus, the
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Table 7: Network Target Moments

All Top-33% All Top-33% M1 M2
Returns Returns Sales Sales

Panel A: Out-degree Moments

median Nout 1.00 1.00 – – 1.71 0.48
99th % Nout 3.38 3.32 – – 4.66 7.39
median Hout 0.05 0.03 – – 0.60 0.12
99th % Hout 0.95 0.54 – – 1.00 0.56
Corr(Nout

t , St) 0.01 −0.07 – – 0.34 −0.45
Corr(Hout

t , St) −0.31 −0.08 – – −0.71 −0.54
Corr(Hout

t , Vt+1) 0.15 0.08 0.29 0.10 0.54 0.43

Panel B: In-degree Moments

median N in 1.00 1.12 – – 1.90 1.90
99th % N in 31.61 16.80 – – 7.39 6.28
median H in 0.00 0.00 – – 0.11 0.01
99th % H in 0.28 0.24 – – 0.85 0.05
Corr(N in

t , St) 0.37 0.49 – – 0.49 0.15
Corr(H in

t , St) −0.26 −0.20 – – 0.03 0.02
Corr(H in

t , Vt+1) 0.13 0.08 0.08 0.08 0.01 −0.00

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and
second columns report data for the cross section of firms for which we have customer information from
Compustat. The sample is 1980-2009. The variance in Column (1)-(2) are calculated based on daily stock
return data, while the variance in Column (3)-(4) are based on 20 quarters worth of annual sales growth (in
the current and the next four years). Column (5) reports the corresponding moments for the benchmark
model M1. Column (6) reports the moments for the extended model M2. Log variances in the model are
constructed with added estimation noise to make them comparable to the moments in the data. All model
calculations impose the 10% truncation on network weights wi,j uniformly.

model quantitatively replicates the factor structure in volatilities.25

4.3.3 Network Moments

Table 7 reports calibration results for network connectivity and concentration. Panel A

focuses on out-degrees and the bottom panel focuses on in-degrees.

25In untabulated analyses we run Granger Causality tests of volatility moments on lagged size dispersion
in the simulated model and find very similar results to Granger tests on actual data reported in Appendix
B.3.
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Out-Degrees Column (5) of Table 7 shows the network-related properties of the bench-

mark model. Like the data in columns (1) and (2), the model features a small number of

supplier-customer relationships after truncation: the median is 1.71 in the model and 1.00

in the data. The 99th percentile of the truncated out-degree distribution is 4.66 in the model

compared to 3.32 in the data. Truncation severely affects the out-degrees: the median of the

untruncated out-degree distribution is 3.71 in the model while the 99th percentile is 112.26

Next we turn to customer network concentration or out-Herfindahls. The Herfindahl

indices, which are also based on truncated degree information, are less biased because large

customers receive a large weight and are more likely to be in the database. The main

shortcoming of the benchmark calibration is that customer network concentration (out-

Herfindahl) is too high. The median is 0.60, higher than the 0.05 value we observe in the

data. The reasons are that in M1 suppliers typically have a small number of connections

and the weighting function is linear in customer size, making large customers extremely

important in a suppliers network. To generate substantial dispersion in firm volatilities

in a setting with only uncorrelated shocks, the model requires too much concentration in

customer networks. The extended model M2 discussed below addresses this shortcoming.

The fifth row of Panel A reports the correlation between out-degree and supplier size. As

discussed in Section 2.6, we find a nearly zero correlation between truncated out-degree and

size in the data. Because of truncation in the network data, the zero correlation based on

truncated degrees belies a substantial positive correlation between size and true, untruncated

out-degrees. Our simulation results show that large firms have many more connections than

small firms, with a cross-sectional correlation of 34% between the truncated out-degree and

log size in the model, and a 60% correlation between untruncated out-degree and log size.

This implies that truncation downward biases the correlation estimate by 26 percentage

points. Using the model-implied bias to correct the observed correlations in the data (1% for

the full sample and −7% for the top-33% sample) implies a 19% to 27% correlation between

untruncated out-degree and log size in the data.

Two moments that lie at the heart of the model’s mechanism are the cross-sectional

26To the extent the data permit, Appendix B.1 discusses the effect of truncation on the distributions of
the out-degrees and the out-Herfindahls in the data.
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correlations of the out-Herfindahl with size and of the out-Herfindahl with variance. The

model generates a strong negative correlation between out-degree Herfindahl and size (−71%)

and a positive correlation between out-degree Herfindahl and volatility (54%), arising because

large firms have a better diversified and thus less concentrated customer bases. In the

data, we find a −31% correlation between size and out-Herfindahl. We also find a positive

relationship between supplier log variance and out-Herfindahl: the correlation is 15% based

on returns and 29% based on sales. That is, firms with a more diversified customer network

indeed experience lower volatility because they are better insulated against a shock to any

single customer. Appendix B.1 shows that these three correlations are statistically significant

at the 1% level. Similar to the firm-level evidence, it also finds a −39% correlation between

an industry’s log size and its out-Herfindahl and a 22% correlation between its out-Herfindahl

and log volatility.

In-Degrees Turning to Panel B of Table 7, the median truncated number of suppliers, or

in-degree, is 1 while the 99th percentile is 17 or 32 depending on the data sample. In the

benchmark model, the median in-degree is 1.90 and the 99th percentile is between 6 and 8.

Concentration of supplier networks is lower than that of customer networks, but still too

high relative to the data.

In the model, the probability that a connection exists between supplier i and customer j

depends only on i’s size and is independent of firm j’s size. Thus, the model predicts a zero

correlation between size and in-degree in the absence of link truncation. While we assume

smaller firms are equally likely to be customers as large firms, truncation will eliminate

the links with small customers, leaving large firms counted as customers far more often.

Thus we expect to see a strong association between size and in-degree in the truncated

data (we find a correlation of 37%). Indeed, the benchmark model M1 produces a 49%

correlation between size and in-degree when the simulated samples are truncated. However,

the correlation between untruncated in-degree and size is 4%, which implies that the 37%

correlation estimate in the data is severely upward biased by truncation. The magnitude

of the bias is such that the bias-corrected correlation between untruncated in-degree and

log size in the data is close to zero for both data samples, and provides evidence that the
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likelihood of a connection between a supplier and a customer does not depend strongly on

the customer’s size, as assumed in our model. Finally, we find a modestly positive correlation

between in-Herfindahl and both measures of volatility, though these estimates are statistically

insignificant in the data (t-statistics shown in the appendix).

4.3.4 Extended Model with Internal and External Diversification

The benchmark model calibration with only external (network) diversification implies too

much concentration and fails to generate enough dispersion in firm volatility. The extended

model (M2) with internal diversification jointly matches size, volatility, and network mo-

ments. This model can generate a wider firm volatility spread than the benchmark model

while continuing to generate a firm size distribution that is similar to the data. In partic-

ular, M2 generates time-series correlations between firm size dispersion and the mean and

dispersion of firm variance that are qualitatively similar to the data. Average firm volatility

has a 52% standard deviation, compared to 20% in M1 and 64% in the data. In general, M2

produces much more action in aggregate moments of the size and volatility distributions.

Firm size and volatility are cross-sectionally more negatively correlated with each other in

M2 than in M1, bringing the model closer to the data, noting that part of this correlation is

now mechanically built in.

Most importantly, the truncated network moments from M2 are much closer to the data

than those of M1. The median out-Herfindahl is 0.12, a factor of 5 smaller than in M1,

and much closer to the data. In addition, the truncated number of suppliers (in-degree)

and the supplier network concentration (in-Herfindahl) are a closer fit with the data than

the benchmark model.27 Thus, the model matches the key features of the size and volatility

distributions while respecting the observed degree of concentration in customer and supplier

networks.

The internal diversification effect, modeled as an exogenous negative correlation between

shock volatility and firm size, cannot match the data in the absence of network effects. In

27While the correlation between log size and truncated out-degree (number of customers) is −45% in
M2 in row 5 of Panel A, the correlation between log size and untruncated out-degree is +74%. Thus, the
truncation bias for this correlation is much larger in M2 than in M1. The bias in the correlation between
log size and in-degree (number of suppliers) is smaller in M2 than in M1; the correlation between log size
and untruncated in-degrees is similar in both models (0.06 in M2 and 0.04 in M1).
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particular, the correlation between firm size dispersion and mean firm volatility turns from

positive to negative once we shut down the network effects in M2 (setting γ = 0). Without

network transmission, an increase in the firm size dispersion makes the firms in the top half

of the distribution (public firms) larger, which lowers their average volatility by assumption.

Hence, the network effects are solely responsible for the strong positive correlation between

size dispersion and mean volatility, our main moment of interest. This result underscores

the crucial role of network effects in accounting for the firm volatility facts, over and above

internal diversification effects.

4.3.5 Downstream Transmission

Our paper also raises an interesting question on the direction of shock propagation in eco-

nomic networks. The literature studies how inter-sector trade networks influence aggregate

volatility and typically considers downstream transmission of shocks from intermediate goods

producers to final goods producers. Our results suggest that upstream shock propagation

provides a better description of firm volatility data, as in equilibrium models with final

demand shocks (Shea (2002)).

To better understand the difference in predictions, Appendix C studies a version of

our model with downstream transmission of shocks instead of upstream transmission. All

parameters are the same as those in M1. Interestingly, the downstream model delivers

identical size and volatility moments, highlighting the usefulness of network mechanisms for

describing joint size and volatility facts, regardless of the direction of shock propagation.

The network moments, however, help identify the transmission direction. The in-degree

and out-degree moments are reversed between upstream and downstream models.28 The

downstream model matches the correlations between in-Herfindahl and size and volatility

better, but completely misses the correlation between out-Herfindahl on the one hand and

size and volatility on the other hand. In the data, the correlation between volatility and

out-Herfindahl is statistically much stronger than that with in-Herfindahl, as in the model

with upstream shock transmission.

28The statement is true for untruncated in-degree and out-degree moments. Truncation affects the network
moments; see appendix for a detailed discussion.
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5 Conclusion

We document new features of the joint evolution of the firm size and firm volatility distri-

bution and propose a new model to account for these features. In the model, shocks are

transmitted upstream from customers to suppliers. Firms sell products to an imperfectly

diversified portfolio of customers. The larger the supplier, the more customer connections

the supplier has, the better diversified it is and the lower its volatility. Large customers have

a relatively strong influence on their suppliers, so shocks to large firms have an important

effect throughout the economy.

When the size dispersion increases in this economy, large firms become more important

and many customer networks become less diversified. In those times, average firm volatility

is higher as is the cross-sectional dispersion of volatility. Because the underlying innovations

are i.i.d. over time, the model endogenously generates “uncertainty shocks”. We provide

direct evidence of network linkages and use supplier-customer relationship data to discipline

the calibration of our model. A calibrated version of the network model augmented with

internal diversification effects quantitatively replicates the most salient features of the firm

size and the volatility distributions; without network effects, the model cannot match the

data.
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A Theoretical Appendix

A.1 Proofs of Propositions

Proof of Lemma 1:

Proof. Note that sample moments of {Bi,kSk}Nk=1 are equivalent to the sample moments of a random sample
of Ni elements from the size distribution, where Ni =

∑
k Bi,k. If Si has finite variance, then the LLN implies

that

NiHi =
N−1i

∑
k Bi,kS

2
k(

N−1i
∑
k Bi,kSk

)2 a.s.→ E[S2]

E[S]2
.

Because Ni is a sum of iid bernoulli variables, Ni ∼ Npi. this implies that Ni/N
(1−ζ) a.s.→ S̃i/Z, which

delivers the result. Under log-normality, E[S2]/E[S]2 = eσ
2
s .

Proof of Lemma 2:

Proof. We begin with the case q = 2.

[W 2]i,j =
∑
k

wi,kwk,j =
∑
k

(
Bi,kSk∑
mBi,mSm

Bk,jSj∑
lBk,lSl

)
=

(
Sj∑

mBi,mSm

)(∑
k

Bi,kBk,jSk∑
lBk,lSl

)
.

As in the previous lemma, the LLN implies N−1i
∑
k Bi,kSk

a.s.→ E[S]. This implies

Sj∑
mBi,mSm

∼ S̃j

S̃i

Z

N1−ζ

To characterize the asymptotic behavior of the second term, first note that Markov’s LLN for heterogeneously
distributed variables implies that N−(1−2ζ)

∑
k Bi,kBk,j

a.s.→ S̃i/Z
2.29 This in turn implies that

∑
k

Bi,kBk,jSk∑
lBk,lSl

∼
∑
k

Bi,kBk,jSk
Sk

Z N
1−ζ

∼ Z

N1−ζNpiE[pk] = N−ζ
S̃i
Z
.

Together with the asymptotic behavior of the first term we have

[W 2]i,j ∼
S̃j
N
.

For induction, assume true for q > 2, so that

[WW q]i,j ∼
∑
k

Bi,kSkS̃j
N (
∑
lBi,lSl)

∼ S̃j
N

∑
k Bi,kSk∑
lBi,lSl

∼ S̃j
N
.

This quantity is of the same form as [W 2]i,j , and the same rationale applied in that case gives [W q+1]i,j ∼
S̃j/N.

We also have that

[WW̄ ′]i,j =
∑
k

Bi,kS
2
k

(
∑
lBi,lSl)NE[S]

∼ E[S2]

NE[S]2

because the finite variance of Sk and the LLN imply N−1i
∑
k Bi,kSk

a.s.→ E[S] and N−1i
∑
k Bi,kS

2
k
a.s.→ E[S2].

29See Theorem 3.7 of White (2001). For Markov’s LLN to apply, the so-called Markov condition must hold.
Applied to the current setting, this requires

∑∞
k=1E|Bk,j−pk|1+δ/k1+δ <∞. Because Bk,j are independent

Bernoulli draws this condition is satisfied.
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Similarly,

[W̄W̄ ′]i,j =
∑
k

S̃2
k

N2
∼ E[S2]

NE[S]2
.

Note that Hi = [WW ′]ii and Lemma 1 applies. For off-diagonal elements of WW ′,

[WW ′]i,j =

∑
k Bi,kBj,kS

2
k

(
∑
lBi,lSl) (

∑
lBj,lSl)

∼ E[S2]

NE[S]2
.

Proof of Proposition 1

Proof. Because V (g) = σ2
ε(I − γW )−1(I − γW ′)−1, we study the behavior of (I − γW )−1 as the number of

firms N becomes large. Noting that (I−γW )−1 = I+γW +γ2W 2 + ..., Lemma 2 establishes the asymptotic
equivalence

(I − γW )−1 ∼ I + γW +
γ2

1− γ
W̄ .

The outer product of I + γW + γ2

1−γ W̄ is

I + γW + γW ′ + γ2WW ′ +
γ2

1− γ
W̄ +

γ2

1− γ
W̄ ′ +

γ3

1− γ
WW̄ ′ +

γ3

1− γ
W̄W ′ +

γ4

(1− γ)2
W̄W̄ ′ (11)

From Lemmas 1 and 2, the behavior of the ith diagonal element of V (g) in a large economy is described by
the stated asymptotic equivalence. In the lognormal special case, E[S2]/E[S]2 = exp(σ2

s).

Proof of Proposition 2

Proof. As in the finite variance case, Hi determines the rate of convergence for firm variance. Recall the
expression for a firm’s Herfindahl:

Hi =
∑
k

Bi,kS
2
k

(
∑
lBi,lSl)

2 =
N

2/η
i N

−2/η
i

∑
k Bi,kS

2
k

N2
i

(
N−1i

∑
lBi,lSl

)2
From Gabaix (2011, Proposition 2) we have that

N
−2/η
i

∑
k

Bi,kS
2
k

d→ u

where u is a Levy-distributed random variable. Because η > 1, mean size is finite and N−1i
∑
lBi,lSl

a.s.→ E[S].
Therefore,

N
2(1−1/η)
i Hi =

N
−2/η
i

∑
k Bi,kS

2
k

N−1i
∑
k Bi,kSk

d→ u

E[S]
.

Finally, recall that

Ni ∼ N1−ζ S̃i
Z

Combining gives us the result:

N (1−ζ)(2−2/η)Hi
d→ u

E[S]

(
Z

S̃i

)2−2/η

.
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Proof of Proposition 3

Proof. Because Hi determines the rate of convergence for firm variance, we may understand how firm
variances covary in a large economy by studying the asymptotic covariance among Hi and Hj .

Define Êi[S
2
k] = N−1i

∑
k Bi,kS

2
k. We first characterize the asymptotic behavior of

Cov
(
Êi[S

2
k], Êj [S

2
k]
)

= E

[
N−1i N−1j

∑
k

∑
l

Bi,kBj,lS
2
kS

2
l

]
− E

[
N−1i

∑
k

Bi,kS
2
k

]
E

[
N−1j

∑
k

Bj,kS
2
k

]
.

Because size has finite fourth moment, the LLN implies that

N−(1−2ζ)
∑
k

Bi,kBj,kS
4
k
a.s.→ E[S4]S̃iS̃j/Z

2,

N−(1−2ζ)(N − 1)−1
∑
k 6=l

Bi,kBj,lS
2
kS

2
l
a.s.→ E[S2]2S̃iS̃j/Z

2,

and
N−(1−ζ)

∑
k

Bi,kS
2
k
a.s.→ E[S2]S̃i/Z.

These imply that

E

[
N−1i N−1j

∑
k

∑
l

Bi,kBj,lS
2
kS

2
l

]
∼ N1−2ζE[S4]S̃iS̃j

N2pipjZ2
+(N−1)N1−2ζE[S2]2S̃iS̃j

N2pipjZ2
=

1

N
E[S4]+

N − 1

N
E[S2]2

and

E

[
N−1i

∑
k

Bi,kS
2
k

]
E

[
N−1j

∑
k

Bj,kS
2
k

]
∼ N2(1−ζ)E[S2]2S̃iS̃j

N2pipjZ2
= E[S2]2

so that
Cov

(
Êi[S

2
k], Êj [S

2
k]
)
∼ N−1V (S2).

Since Hi = N−1i Êi[S
2
k]/
(
N−1i

∑
k Bi,kS

2
k

)
, we have

Cov(Hi, Hj) ∼
1

N2(1−ζ)
Z2

S̃iS̃jE[S]4
Cov

(
Êi[S

2
k], Êj [S

2
k]
)

which delivers the stated asymptotic equivalence.

Proof of Proposition 4

Proof. Let St be the vector of sizes, and νt = St/ι
′St the vector of size weights.

ga,t+1 = ν′tgt+1 = ν′t (I − γW t)
−1 (

µg + εt+1

)
.

The variance of the aggregate growth rate is given by:

Vt(ga,t+1) = σ2
εν
′
t (I − γW t)

−1 (
I − γW ′

t

)−1
νt,

∼ σ2
ε

[
ν′tνt + γν′tWνt + γν′tW

′νt + γ2ν′tWW ′νt +
γ2

1− γ
ν′tW̄νt +

γ2

1− γ
ν′tW̄

′νt

+
γ3

1− γ
ν′tWW̄ ′νt +

γ3

1− γ
ν′tW̄W ′νt +

γ4

(1− γ)2
ν′tW̄W̄ ′νt

]
, (12)

where the second expression is asymptotically equivalent, as explained in Proposition 1. Define H̄ =
E[S2]/(NE[S]2). From the previous derivations, the following equivalencies hold: ν′ι = 1,ν′ν ∼ H̄,ν′W ∼
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Figure 4: Customer-Supplier Network Degree Distributions

0 0.5 1 1.5 2 2.5 3 3.5
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Out−Degree (log scale)

(O
n
e 

M
in

u
s)

 O
u
t−

D
eg

re
e 

C
D

F
 (

lo
g
 s

ca
le

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

In−Degree (log scale)

(O
n

e 
M

in
u

s)
 I

n
−

D
eg

re
e 

C
D

F
 (

lo
g

 s
ca

le
)

Notes: The figure plots log-log survivor plots of the out-degree and in-degree distributions of the Compustat customer-supplier
network data pooling all firm-years for 1980–2009.

ν′,ν′W ′ ∼ H̄ι′, W̄ ′ν ∼ ν, and W̄ν ∼ ιH̄. Applying these to (12) and combining terms, we find that the
aggregate variance is asymptotically equivalent to:

Vt(ga,t+1) ∼ σ2
ε

[
1 + 2γ + γ2 + 2

γ2

1− γ
+

2γ3

1− γ
+

γ4

(1− γ)2

]
H̄ =

σ2
ε

(1− γ)2
H̄

which delivers the stated result.

B Empirical Appendix

This appendix discusses several additional empirical results.

B.1 Summary Statistics Network Data

This appendix provides additional detail on the network data.
We find that the number of customers a Compustat firm has, the “out-degrees,” ranges between 1 and

24 while the number of suppliers a firm has, the “in-degrees,” ranges between 1 and 130. Firms can but are
not required to report customers that represent less than 10% of their sales. Out-degrees can reach 24 since
some suppliers (23%) voluntarily report customers that fall below the 10% sales threshold. The maximum
out-degrees falls to 5 when we strictly impose the 10% sales truncation. Figure 4 provides a summary of
network connections for customers and suppliers in the Compustat linkage data. The left panel shows the
distribution of number of links by supplier (out-degree) on a log-log scale, while the right panel shows the
distribution of links by customer (in-degree).

Figure 5 reports histograms of weights of customer-supplier sales linkages pooling all supplier-year obser-
vations. The distribution for the raw data, in which some suppliers voluntarily report customers below the
10% sales threshold, is on the left. The right panel shows the weight distribution when we strictly impose
the 10% sales truncation.
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Figure 5: Customer-Supplier Network Linkage Weights
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Notes: The figure plots the histogram of Compustat customer-supplier sales weights for the raw data (left panel), and when we
strictly imposed the 10% sales threshold in our calibration. Plots pool all firm-years for 1980–2009.

Table 8 reports some key moments of the network data. We calculate cross-sectional correlations for
each yearly network realization in the Compustat linkage data and report the time series average of annual
correlations. We also report a t-statistic, measured as the ratio of the time series mean of the correlation to
its time-series standard deviation. In these calculations, size is defined as annual firm sales. Columns (1)-(5)
take the perspective of the suppliers and the connections with their customers. Instead, Columns (6)-(10)
focus on costumers’ connections to their suppliers. In Panel A we consider all customer-supplier linkages,
while in Panel B we only keep those pairs where the customer represents at least 10% of the supplier’s sales.
Thus, Panel B imposes the truncation also on the firms that voluntarily report more customer data than
required.

Panel C adds moments obtained from industry data. Industry input-output data are from the Bureau
of Economic Analysis (BEA). Because industry definitions vary quite dramatically over time, we focus on
a set of 65 industries we can track consistently over time between 1998 and 2011. This data is informative
for evaluating cross-sectional correlations between industry size and network structure since it does not
suffer the truncation issue that plagues the Compustat firm-level data. In related work, Ahern and Harford
(forthcoming) use the network topography implied by the BEA industry data to show that the properties
of these networks have a bearing on the incidence of cross-industry mergers. We do not have return-based
volatility measures in the industry data.

The moments reported in Columns 1 and 2 are discussed in Section 2.6, and the moments reported in
the other columns are discussed in Section 4.3.3. The numbers reported in the latter section in Table 7 are
identical to those reported in Panel B of Table 8. Table 8 additionally provides t-statistics.

B.2 Frequency Decomposition

To study the trend and cycle in the size and volatility moments, we apply the Hodrick-Prescott filter with
a smoothing parameter of 50. Figure 6 reports HP-detrended moments. The top-left panel shows firm size
dispersion and mean firm volatility based on market capitalization and return volatility. The top right panel
reports firm size dispersion and dispersion of firm volatility, also based on market data. The bottom two
panels are the counter-parts where size and volatility are based on sales data. The correlations between
the cyclical component in average log volatility and size dispersion are 29.2% for the market- and 58.0% for
the sales-based measure. The correlations between the cyclical component in volatility dispersion and size
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Table 8: Overview of Size, Volatility, and Customer-Supplier Network Struc-
ture

Supplier Customer

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

wi,j,t logSi,t logSi,t Hout
i,t Hout

i,t wi,j,t logSi,t logSi,t H in
i,t H in

i,t

Sj,t Nout
i,t Hout

i,t log σi,t(r) log σi,t(s) Sj,t N in
i,t H in

i,t log σi,t(r) log σi,t(s)

Panel A: Compustat Firm Data - Untruncated

Avg. 0.20 0.03 -0.31 0.15 0.27 0.78 0.37 -0.25 0.12 0.08

t− stat 3.61 0.86 -8.69 2.79 3.53 23.44 21.63 -4.34 0.93 0.80

Panel B: Compustat Firm Data - Truncated

Avg. 0.19 0.01 -0.31 0.15 0.29 0.89 0.37 -0.26 0.13 0.08

t− stat 2.03 0.21 -7.08 2.40 3.69 35.92 22.79 -4.00 0.98 0.85

Panel C: BEA Industry Data - Untruncated

Avg. 0.37 0.61 -0.39 – 0.22 0.41 0.46 0.10 – 0.26

t− stat 40.18 28.00 -12.63 – 2.67 44.58 19.33 5.99 – 2.53

Notes: The table reports cross-sectional correlations between various features of customer-supplier networks with size and
volatility. Panels A and B are based on annual firm-level Compustat data for the period 1980-2009. Panel C is based on annual
industry-level Bureau of Economic Analysis data for a set of 65 consistently measured industries for the period 1998-2011. The
table reports the time-series average as well as the t-statistic, measured as the time-series average divided by the time-series
standard deviation estimated over the sample. In Panel A, we use all linkage data in the Compustat data base. In panel B,
we impose a 10% truncation, which implies that we discard all customer-supplier pairs that represent less than 10% of supplier
sales. The industry data in Panel C are complete and do not suffer from a truncation problem.

dispersion are 65.9% for the market- and 54.4% for the sales-based measure. These results suggest that the
correlations between the dispersion in the firm size distribution and moments of the volatility distribution
occur at both lower and at cyclical frequencies.

B.3 Granger Causality Tests

Our network model predicts that movements in the size distribution precede changes in the volatility distri-
bution. When the size distribution spreads out (contracts) at time t, the network structure for the subsequent
period adjusts, and diversification of growth rate shocks is hindered (enhanced). We use Granger causality
tests to formally evaluate whether dispersion in firm sizes predicts the mean and standard deviation of the
volatility distribution, after controlling for own lags of the dependent variable. Table 9 presents the results
from these tests. We find that firm size dispersion (based on log market equity) has statistically significant
predictive power for mean firm volatility (based on returns), and dispersion in volatility. The reverse is not
true. After controlling for own lags of size moments, moments of the volatility distribution do not predict the
size distribution. Lagged dispersion in log volatility appears to Granger-cause size dispersion, but the coef-
ficient has the wrong sign. The hypothesis has the one-sided alternative that volatility dispersion positively
predicts size dispersion; thus this negative result leads us to fail to reject the null. This evidence suggests
that size dispersion leads the volatility distribution, consistent with the model. This evidence should not be
interpreted as support for economic causality, but merely for time-series predictability.
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Figure 6: Detrended Size and Volatility Moments
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Notes: The figure plots HP-detrended time series moments of size and volatility distributions using smoothing parameter of 50.

B.4 Size and Volatility Moments for Public vs. Private Firms

We investigate whether the properties of firm size and firm volatility are the same for publicly-listed and
privately-held firms using three different databases. To the extent that they are, it suggests that our results
are not driven by our study of publicly-listed firms.

First, we use the data set provided by Bloom, Floetotto, Jaimovich, and Terry (2012) which allows us
to compare measures of firm-level volatility between the universe of publicly-listed firms and the universe of
manufacturing establishments. Data on manufacturing establishments are from the Census of Manufactures
(CM) and the Annual Survey of Manufactures (ASM) from the U.S. Census Bureau between 1972 and 2009
for establishments with 25 years or more of observations. The data also contain a volatility measure for all
public firms with 25 years (300 months) or more in CRSP between 1960 and 2010. Panel A of Table 10 shows
the correlation of sales growth volatility and stock return volatility with the volatility of TFP shocks and
the volatility of output growth, respectively. IQR of log(TFP) shock (all manufact.) is the cross-sectional
interquartile range of the Total Factor Productivity (TFP) “shock” measured at the establishment level, and
IQR of output growth (all manufact.) is the interquartile range of plants’ sales growth. These two volatility
measures are constructed from the Census data. IQR of sales growth (public) is the annual average of the
interquartile range of firms’ sales growth by quarter for all publicly-traded firms in Compustat between
1962 and 2010. Lastly, IQR of stock returns (public) is the annual average interquartile range of firms’
monthly stock returns for all public firms in CRSP between 1960 and 2010. Panel A shows a strong positive
correlation between the sales-based and return-based volatility measures for public firms, which our study
shares with Bloom et al. (2012), and the volatility measures for output growth and TFP shocks, which are
constructed from the universe of private and public manufacturing establishments.
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Table 9: Granger Causality Tests

Dependent Variable Independent Variables

Intercept µσ,t−1 σS,t−1

µσ,t Coeff -1.18 0.74 0.07
t-stat. -2.82 8.31 2.21

σS,t Coeff -0.28 -0.11 0.97
t-stat. -0.47 -0.88 16.01

Intercept σσ,t−1 σS,t−1

σσ,t Coeff -0.02 0.61 0.04
t-stat. -1.48 5.86 3.12

σS,t Coeff 0.20 -1.19 1.04
t-stat. 1.47 -2.25 15.88

Notes: Annual data 1926–2010. The table reports results of Granger causality tests for the ability of log firm size dispersion
(σS,t−1) to predict the mean (µσ,t) and standard deviation (σσ,t) of the log volatility distribution. We use the market based
volatility measure constructed from stock returns and the market equity measure of size.

Our second data set compares size and volatility moments of Income Statement and Balance Sheet items
for the universe of active and inactive firms on Compustat. Inactive Compustat firms are firms that are no
longer publicly-listed due to acquisition or merger, bankruptcy, leveraged buyout or change of status to a
private company. We use quarterly data from 1962 to 2007, two different measures of size (net sales and
pretax income), and we adjust semi-annual and annual reports to quarterly data. There are 25,619 unique
firms in the sample, and the number of active and inactive firm-quarter observations is similar. For example,
for net sales we have on average 2265 active firms each period and 3530 inactive firms. Size dispersion is
computed as the cross section standard deviation of size. To calculate the volatility, we construct the annual
growth rate, quarter by quarter, and, then, we define the volatility as the standard deviation of the growth
rate over the next 20 quarters. Panel B of Table 10 reports the time series correlation between active and
inactive firms’ size dispersion, mean volatility and volatility dispersion. The public and private samples
display a strong positive correlation in our key moments of the size and volatility distribution.

Third, we look at the evolution of firm size dispersion for public firms versus that for all firms, using the
number of employees as the measure firm size. The public data are from Compustat while the firm data for
the universe of firms are form the Census’ Business Dynamic Statistics. The sample is annual and covers the
period 1977-2009. The Census reports employment data in 12 employment bins ranging from 1−4 employees
at the low end to 10, 000+ at the high end. We construct the same bins using the Compustat employment
data. We also create a spliced series that divides the 10,000+ bin into 25 sub-bins applying an imputation
that replicates the employment distribution in that bin in the Compustat employment data. The evolution
of firm size dispersion when considering the entire universe of firms seems similar to the one in Compustat.
The correlation between the cross-sectional variance of log size in Compustat and the spliced series is 62%.
The correlation between the non-spliced Census measure and the Compustat measure is 65%.

As an aside, we note that at the start of the sample, the Census reports 728 firms with more than
10,000 employees, while Compustat reports 677. So, we have fairly comprehensive coverage at the start of
the sample. At the end of the sample, there are 1,975 with 10,000+ firms, only 1,016 of which show up
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Table 10: Private versus Public Firms

Panel A: Volatility Measures from Bloom et al. (2012)

Correlation between

IQR of sales growth (public) and IQR of log(TFP) shock (all manufact.) 0.49

IQR of sales growth (public) and IQR of output growth (all manufact.) 0.38

IQR of stock returns (public) and IQR of log(TFP) shock (all manufact.) 0.33

IQR of stock returns (public) and IQR of output growth (all manufact.) 0.52

Panel B: Compustat – active versus inactive firms

Correlation between measures of

Compustat variable size disp mean vol vol disp

Net Sales 0.74 0.91 0.88

Pretax Income 0.60 0.97 0.55

Notes: Panel A reports time series correlations between various volatility measures constructed from public and private firms by
Bloom, Floetotto, Jaimovich, and Terry (2012). In Panel B, we compute time series for firm size dispersion, mean firm volatility,
and the dispersion of firm volatility for two non-overlapping samples of active (public) and inactive (private) Compustat firms.
We then report the correlation of those statistics between active and inactive firms. The text of Appendix B.4 contains all the
details.

in Compustat. There are more large, private firms at the end of the sample. This observation makes the
previous exercise, based on active and inactive Compustat firms, extra useful because Compustat captures
the large private firms.

In conclusion, the changes in the firm size and volatility distribution that we have documented do not
seem specific to the universe of publicly-traded firms. Combined with the evidence for the evidence of the
subgroups of publicly-listed firms discussed in Section 3.3, the evidence suggests that the correlation between
firm size dispersion and the mean and dispersion of the firm volatility distribution are robust features of the
data.

C Calibration Appendix: Downstream Results

We study a version of our model where the direction of shock transmission is reversed from upstream to
downstream. A firm’s growth rate now depends on its own shock and on the growth rate of its suppliers. We
use the exact same calibration as in the benchmark model. If we abstract from truncation, then reversing the
direction only changes the network moments reported in Table 7; the moments in the size and volatility tables
5 and 6 are identical. In terms of network moments, the untruncated in-degree and out-degree moments
are reversed. However, after truncation (which operates at the level of suppliers), the results look different.
Table 11 reports results for the downstream transmission case. This version of the model has more success
matching the in-degree moments, but then it does considerably worse matching the out-degree moments
in the top panel. Most importantly, this version of the model implies counter-factually that there is no
correlation between out-Herfindahls and volatility. In the data, we found that this relation is statistically
strong (see Table 8) unlike that between volatility and in-Herfindahl. In addition, Table 3 showed that out-
Herfindahl is a robust determinant of firm volatility after controlling for other variables, while the relation
between supplier Herfindahls and volatility is not.
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Table 11: Downstream Transmission: Network Moments

All Top-33% All Top-33% M1 Reverse M1
Returns Returns Sales Sales Upstream Downstream

Panel A: Out-degree Moments

median Nout 1.00 1.00 – – 1.71 3.88
99th % Nout 3.38 3.32 – – 4.66 6.15
median Hout 0.05 0.03 – – 0.60 0.25
99th % Hout 0.95 0.54 – – 1.00 1.00
Corr(Nout

t , St) 0.01 −0.07 – – 0.34 0.14
Corr(Hout

t , St) −0.31 −0.08 – – −0.71 −0.08
Corr(Hout

t , Vt+1) 0.15 0.08 0.29 0.10 0.54 0.05

Panel B: In-degree Moments

median N in 1.00 1.12 – – 1.90 2.34
99th % N in 31.61 16.80 – – 7.39 62.34
median H in 0.00 0.00 – – 0.11 0.48
99th % H in 0.28 0.24 – – 0.85 1.00
Corr(N in

t , St) 0.37 0.49 – – 0.49 0.59
Corr(H in

t , St) −0.26 −0.20 – – 0.03 −0.48
Corr(H in

t , Vt+1) 0.13 0.08 0.08 0.08 0.01 0.50

Notes: All reported moments are time-series averages unless explicitly mentioned otherwise. The first and second columns
report data for the cross section of firms for which we have customer information from Compustat. The sample is 1980-2009.
The variance in Columns 1 and 2 is calculated based on daily stock return data, while the variance in Columns 3 and 4 is based
on 20 quarters worth of annual sales growth (in the current and the next four years). Column 5 reports the corresponding
moments for the benchmark model (M1). Column 6 shows the benchmark model M1, but with the reverse transmission of
shocks from suppliers to customers (Downstream). Log variances in the model are constructed with added estimation noise to
make them comparable to the moments in the data.
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