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Abstract
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local applicants. With securitization, banks lend also to remote applicants with

strong observables in order to lessen the lemons problem they face in selling

their securities. This reliance on observables is ine¢ cient, raises the mean

default risk, and may lead to a deceptive rise in credit scores.
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1 Introduction

Securitization of conventional home mortgages began in 1970 with the founding of

the Federal Home Loan Mortgage Corporation.1 The proportion of mortgages held

in market-based instruments rose steadily from 20% in 1980 to 68% in 2008.2 Earlier

evidence indicates that securitization has been growing at least since 1975 (Ja¤ee and

Rosen [21, Table 2]).

Remote lending has also grown. Petersen and Rajan [28, Figures I and II] �nd

an upwards trend in distances between small �rms and their lenders that began in

about 1978 or 1979 and continued through the end of their data in 1992. The mean

borrower-lender distance in a sample of small business loans studied by De Young,

Glennon, and Nigro [13, pp. 125-6] rose from 5.9 miles in 1984 to 21.5 miles in 2001.

Remote lending of residential mortgages also rose from 1992 to 2007 (Loutskina and

Strahan [23, p. 1477], discussed below).

We present a tractable theoretical model that links securitization and remote

lending. We assume that banks have hard information about all loan applicants

but soft information about only local applicants. Without securitization, banks lend

only to local applicants because of a winner�s curse. With securitization, in contrast,

ignorance is bliss: the less a bank knows about its loans, the less of a lemons problem

it faces in selling them.3 This enables banks to compete successfully for some remote

applicants.

Our model yields many predictions that are consistent with prior empirical �ndings

(section 5.1):

1. Securitization Stimulates Lending. As in Shin [32], securitization leads to

1A detailed history of securitization appears in Hill [20].

2The source is unpublished data underlying Figure 3 in Shin [32].

3In a prior empirical paper, Loutskina and Strahan [23] point out that banks may have an

incentive to lend remotely in order to avoid private information at the time of securitization.
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expanded lending by connecting liquid investors with loan applicants. There is

considerable evidence that the securitization boom in the 2000s led to expanded

lending (Demyanyk and Van Hemert [12]; Krainer and Laderman [22]; Mian and

Su� [24]).

2. Securitization Favors Remote Lending. In our model, banks lend remotely

only if they can securitize their loans. Moreover, a bank securitizes all of its

remote loans but only some of its local loans. Loutskina and Strahan [23]

�nd that as securitization rose, the market share of concentrated lenders - those

which originate at least 75% of their mortgages in one MSA - fell from 20% to 4%

from 1992 to 2007. Moreover, concentrated lenders retain a higher proportion

of their loans. Finally, when they expand to new MSA�s, these lenders are

more likely to sell their remote loans than those made in their core MSA�s.

3. Remote Borrowers have Strong Observables but High Conditional

Default Rates. While a bank might lend to a local applicant who has a

low credit score in our model, it will not do so for a remote one whose credit

score is all it sees. Hence, remote borrowers tend to have stronger observables

than local borrowers. (We use �borrower� to refer to an applicant who gets

a loan.) On the other hand, since banks lack soft information for remote

applicants, they make worse lending decisions: conditional on observables,

distant borrowers are more likely to default.4 Loutskina and Strahan [23,

p. 1456] �nd that concentrated lenders (de�ned above) have lower loan losses

despite lending to applicants who are riskier in terms of loan to value ratios.

Agarwal and Hauswald [1] �nd that applicants with strong observables tend to

apply online for loans, while in-person applicants tend to be those with weaker

observables but positive estimates of the bank�s soft information about them.

4This empirical implication is also present in the prior theoretical model of Hauswald and Marquez

[18], which we discuss in section 6.3.
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Moreover, online loans default more than observationally equivalent in-person

loans. De Young, Glennon, and Nigro [13] �nd that banks that lend remotely

have higher default rates.

4. Securitization Lets Borrowers with Strong Observables Get Cheap

Remote Loans. In our model, securitization encourages banks to lend to

remote applicants with strong observables. They must o¤er low interest rates

to these applicants in order to prevent cream skimming by the applicants�local

banks. In contrast, banks can demand high interest rates from quality local

applicants whose observables are weak since these applicants cannot get remote

loans. This has two empirical implications. First, the securitization boom in

the 2000s should have strengthened the (negative) relation between borrower

observables and interest rates. Rajan, Seru, and Vig [30] �nd that borrower

credit scores and LTV ratios explain just 9% of interest rate variation among

loans originated in 1997-2000 but 46% of this variation among loans originated

in 2006. A second implication is that remote borrowers pay lower rates.5

Agarwal and Hauswald [1] �nd that internet loans carry lower interest rates

than in-person loans. Degryse and Ongena [8] �nd that interest rates decrease

with the distance between small �rms and their lenders in Belgium. Mistrulli

and Casolaro [25] �nd the same relation among business lines of credit in Italy.

5. Securitization Raises Conditional and Unconditional Default Rates.

Securitization encourages more remote lending in our model. This raises default

rates conditional on borrower observables. Securitization also makes lending

more pro�table in general, which encourages banks to lower lending standards as

in Shin [32]. For both reasons, the unconditional default rate also rises. These

predictions are con�rmed by empirical research. Rajan, Seru, and Vig [30] �nd

5The comment in footnote 4 applies here as well.
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that conditional default rates rose between 1997-2000 and 2001-6.6 Demyanyk

and Van Hemert [12] �nd that conditional and unconditional default rates rose

from 2001 to 2007.7

6. Securitized Loans Have Higher Conditional Default Rates than Re-

tained Loans. In our model, local banks adopt lower lending standards in

local areas that are more pro�table to securitize. Hence, securitized loans have

higher default rates than retained loans conditional on observables. Krainer

and Laderman [22] �nd that controlling for observables, privately securitized

loans default at a higher rate than retained loans. Elul [15] �nds that securi-

tized loans perform worse than observationally similar unsecuritized loans, and

that the e¤ect is strongest in the prime market.

In our model, securitization has mixed e¤ects on social welfare. It raises the sup-

ply of funding for worthwhile projects by connecting liquid investors with deserving

loan applicants. However, it also leads to an ine¢ cient loan allocation by giving

banks an incentive to favor remote applicants with strong observables. For instance,

consider two applicants in the same location. One has a high credit score but a

negative NPV project. The other has a low credit score but a positive NPV project.

A remote bank would favor the �rst applicant since evaluating a project�s NPV re-

quires soft information, which it lacks. A local bank may prefer not to fund either

applicant because it knows too much about them, which makes their loans di¢ cult

to sell. Hence, funds go to the negative-NPV project, which is clearly ine¢ cient.

6They control for the loan interest rate, credit score, loan to value ratio, and dummy variables

for adjustable rates, prepayment penalties, and whether the lender lacked documentation of the

borrower�s income or assets.

7Their controls include the loan interest rate, borrower credit score, loan to value ratio, debt to

income ratio, local changes in house prices and unemployment since origination, and dummies for

prepayment penalties, owner-occupier status, and low documentation.
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We treat securitization as an exogenous innovation that encourages remote lend-

ing. If instead securitization were initially possible and an exogenous barrier to re-

mote lending were then lifted, our model would also predict a simultaneous increase

in both remote lending and securitization.8 In practice, legal barriers to interstate

banking fell gradually starting in Maine in 1978 and ending with the federal govern-

ment�s passage of the Interstate Banking and Branching E¢ ciency Act of 1994, which

abolished all remaining restrictions (Loutskina and Strahan [23, pp. 1451-2]). Since

securitization was invented earlier, these barriers may have fallen partly in response

to pressure from large banks who were eager to increase their securitization pro�ts.

Alternatively, their fall may have been due to an exogenous change in regulatory

philosophy. This is an interesting topic for future empirical research.

The rest of the paper is as follows. The model is presented in section 2. Section 3

analyzes a base case without securitization, while the full model is studied in section

4. The model�s predictions are discussed and illustrated in section 5. Section 6

reviews related theoretical literature, while conclusions appear in section 7.

2 The Model

A country consist of two ex ante identical regions, A and B, each containing a single

bank. We will refer to the bank in region A (B) as bank a (respectively, b). Each

region R 2 fA;Bg consists of a continuum of locations ` 2 [0; 1]. In each location `

there is a continuum of agents. All participants are risk-neutral.

Each agent has a project that requires one unit of capital and pays a �xed gross

return of � > 1 if it succeeds and zero otherwise. The project�s success probability

8Since we assume banks lack private information about their remote loans and have a lower

discount factor than investors, banks securitize all of their remote loans. Since - in our model -

they securitize only some of their local loans, removing a barrier to remote lending would raise the

proportion of loans that are securitized.
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is the product of the agent�s unknown type � 2 (0; 1) and a macroeconomic shock

SR` 2 (0; 1) to the agent�s location ` in the region R in which she lives. Project

outcomes, conditional on these success probabilities, are independent.9

There are four periods, t = 1; 2; 3; 4. Period 1 is the lending stage. The banks

see signals of each agent�s type � and then make competing loan o¤ers to the agents.

This stage determines which agents borrow from which banks, and at what interest

rates. Period 2 is the security design stage. Each bank decides which loans to

securitize and what liquidating dividend to pay as a function of the returns of these

loans. Period 3 is the signalling stage. The bank in each region R �rst sees signals

of its local macroeconomic shocks SR` . Each bank then chooses how many shares of

its security to sell to investors. Period 4 is the settlement stage: project returns

are realized, successful borrowers repay their loans, and each bank pays a liquidating

dividend to holders of its security.

The local shock SR` has the form

SR` =
KX
k=1

�Rk`�
R
k : (1)

For each k, �Rk 2 (0; 1) is a random variable that is realized after the security is sold

and �Rk` 2 [0; 1] is a constant satisfying
PK

k=1 �
R
k` � 1.10 We refer to �Rk as the

kth local factor in region R and to �Rk` as location `�s loading on this factor. For

instance, each factor may represent an industry and the factor loading may be the

share of a location�s workforce that is employed in the industry.11 In each region R,

the distribution of the factor loading vector
�
�Rk`
�K
k=1

across locations ` 2 [0; 1] has no

atoms.12

9That is, a project�s success probability is �SR` regardless of the outcomes of other projects.

10One can include a constant term in equation (1) by assuming that one of the factors is a constant.

11Factor dependence within and across regions is permitted, as detailed below in section 2.1.3.

12That is, there is no factor loading vector that receives a strictly positive probability weight.
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At the beginning of period 1, both banks see a public signal spub 2 (0; 1) of type

� of each agent. Simultaneously, the agent�s local bank also sees a private signal

spriv 2 (0; 1) of �.13 The joint population distribution of the type �, signals spub

and spriv, and location ` is given by a known distribution function F and associated

continuous density function f on the domain (0; 1)3 � [0; 1].

The assumption that F is region-independent is purely for notational convenience.

It could be replaced by region-speci�c distribution functions FA and FB with no

change in the results, except for the proliferation of region superscripts throughout

the paper. The same is true of all distributions derived from F . In particular, we

will also use F to denote the marginal and conditional distribution functions of these

variables or subsets of them; for instance, F (�jspriv; spub; `) denotes the conditional

distribution of � given spriv, spub, and `. The corresponding densities are written

with �f�in place of �F�, and we assume that all such densities are continuous.

We assume that an increase in the public signal - or in the private signal conditional

on the public signal - raises the conditional distribution of � in a �rst-order stochastic

dominance sense. This is formalized in the following two assumptions. The �rst

says that an increase in the public signal weakly lowers the probability of observing a

type � below any given threshold, and strictly lowers the average of these probabilities

across thresholds. Moreover, this e¤ect is bounded above. The second property is

like the �rst but relates to the e¤ect of the private signal on the distribution of types

conditional on the public signal. (In both cases, we also condition this distribution

on the location `.)

Public Signal Monotonicity For any signal spub 2 (0; 1) and location ` 2 [0; 1],

there are integrable functions � � � : (0; 1) ! <+, such that the integralR 1
�=0

� (�) d� is strictly positive and for each � 2 (0; 1), the derivative @F(�jspub ;`)
@spub

exists

and lies between �� (�) and �� (�), inclusive.

13The outcome of the model will not depend on what the applicant knows about her own type, as

the applicant simply borrows from the bank that o¤ers her the lower interest rate.
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Private Signal Monotonicity For any signals spub; spriv 2 (0; 1) and location ` 2

[0; 1], there are integrable functions � � � : (0; 1) ! <+ such that the in-

tegral
R 1
�=0

� (�) d� is strictly positive and for each � 2 (0; 1), the derivative
@F(�jspriv ;spub ;`)

@spriv
exists and lies between �� (�) and �� (�), inclusive.

Let � = E [�jspub; `]
d
= � (spubj`) denote an agent�s expected type given her public

signal and location; let � = ��1E [�jspub; spriv; `]
d
= � (sprivjspub; `) denote the propor-

tional change in this expectation that results from learning her local bank�s private

signal.14 By the Law of Iterated Expectations, E (�j�; `) is identically equal to one.

Henceforth, we will work directly with � and �, which we refer to respectively

as the agent�s credit score and private type. The following result states that (a) the

credit score is strictly increasing in the public signal and (b) conditional on the public

signal, the private type is strictly increasing in the private signal. Moreover, both

rates of increase are bounded.

Claim 1 The functions � (spubj`) and � (sprivjspub; `) have slopes (with respect to spub
and spriv, respectively) that are strictly positive and �nite.

Claim 1 has the following useful implication. Let us say the pair (�; `) is feasible

if the location ` is in [0; 1] and the credit score � lies strictly between supspub � (spubj`)

and infspub � (spubj`). All feasible pairs have a �nite, strictly positive probability

density:

Claim 2 The pair (�; `) is distributed according to a �nite density g which is strictly

positive on the set of feasible pairs (�; `).

Let the distribution function of (�; `) be denoted G (�; �). Let the conditional

distribution function of the private type � given the credit score � and location ` be

14The symbol � d=�denotes a de�nition.
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denoted H (�j�; `). With probability one, the support of H (�j�; `) has a �nite supre-

mum ��`.15 We assume that H is not too concave, and its concavity is nondecreasing

in �:

No Cream Skimming Let H 0 and H 00 denote the �rst and second derivatives of

H (�j�; `)with respect to �. For all feasible pairs (�; `) and for all � in the

interior of the support of H (�j�; `), (a) these derivatives exist and (b) H 00�=H 0

is greater than �1 and is weakly increasing in �.

This property will imply that if bank a (for instance) lends to some agents with credit

score � in location ` in region B, then bank a prefers to charge an interest rate that

is low enough to deter bank b from lending to any agents in this group. Hence, in

equilibrium bank b does not �cream skim�: lend to agents with high private types �

but not to all agents. This fact allows us to solve analytically for the interest rates

that the banks charge for every credit score, location, and region. It is consistent

with the observation of Agarwal and Hauswald [1] that internet lenders charge low

rates partly in order to prevent cream skimming:

Arm�s-length debt is less readily available but carries lower rates be-

cause competition among symmetrically informed banks, which rely on

public information, not only drive down its price but also restrict access

to credit to minimize adverse selection. [Agarwal and Hauswald [1, p. 2]]

The following result shows that No Cream Skimming is equivalent to a particular

assumption on the primitives of the model.

Claim 3 Let F 0 and F 00 denote the �rst and second derivatives of F (sprivjspub; `)

with respect to spriv. Let � 0 and � 00 denote the �rst and second derivatives of � =

15Since � � 1, ��` is no greater than 1=�. Since � > 0, � = E (�jspub ; `) is strictly positive for

any spub that occurs with positive probability. Hence, 1=� is �nite with probability one, so ��` is

as well.
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� (sprivjspub; `) with respect to spriv. Assume these derivatives exist. Then No Cream

Skimming holds if and only if, for all spriv, spub, and `, F 00

F 0�0 �
�00�
[�0]2

is greater than �1

and is weakly increasing in spriv.

The following property states that for any given public signal, one can �nd private

signals that are strong enough that make an agent at least as appealing as any other

agent. For instance, if an agent with several loan delinquencies (the public signal)

has just inherited a large enough sum of money (the private signal), a bank can ignore

her weak credit history.

Limit Irrelevance For any public signal spub, location `, and " > 0, there exists a

private signal spriv for which E [�jspub; spriv; `] > 1� ".

This will imply that a remote bank lends to applicants whose credit scores exceed

a location-dependent threshold.16 Indeed, Agarwal and Hauswald [1] �nd that the

chance that a bank will approve an online loan is increasing in both the applicant�s

public credit quality and the bank�s internal assessment, but the latter�s e¤ect is

very small. Limit Irrelevance permits the depiction of our results using simple two-

dimensional diagrams. We also consider what happens in the absence of this as-

sumption.

We now produce an example that satis�es all of the above assumptions. Suppose

that spriv, spub, and ` are independent and each is uniformly distributed on the unit

interval.17 This implies that F (sprivjspub; `) = spriv, so F 00 = 0. Let the conditional

distribution of � given the two signals and location be F (�jspriv; spub; `) = �
m

1�m where

m = 1�(1� spriv) (1� spub). The mean of this distribution, E (�jspriv; spub; `), equals

16Without Limit Irrelevance, a bank may o¤er loans in a given remote location to applicants with

credit score �0 but not to those whose credit scores are �00 > �0.

17This refers to the closed unit interval in the case of ` and the open interval in the case of spriv

and spub .
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m. Hence,

� (sprivjspub; `) =
E (�jspriv; spub; `)
E (�jspub; `)

=
1� (1� spriv) (1� spub)

1� 1�spub
2

;

so � 00 = 0 as well. No Cream Skimming then follows from Claim 3. Limit Irrelevance

holds since limspriv!1E (�jspriv; spub; `) = 1. Since �
m

m�1 is strictly increasing in m,

which is strictly increasing in spriv, Private Signal Monotonicity holds. Public Signal

Monotonicity holds since F (�jspub; `) =
R 1
spriv=0

F (�jspriv; spub; `) dspriv.

2.1 Timing

We now describe each period in greater detail.

2.1.1 Period 1: Lending Stage

In period 1, the banks o¤er loans �rst to remote agents and then to local agents. That

is, banks a and b �rst make simultaneous and public loan o¤ers to agents who live in

regions B and A, respectively. These o¤ers can depend on an agent�s credit score �

and location `, which are all the banks know. The banks then make simultaneous

and public counter-o¤ers to agents who live in regions A and B, respectively. These

o¤ers can depend not only on � and `, but also on an applicant�s private type � and

her o¤er (if any) from her remote bank. Each agent then chooses which, if any, o¤er

to accept. As the banks are perfect substitutes from an agent�s point of view, an

agent will choose the bank that o¤ers her the lowest gross interest rate as long as it

does not exceed the project return �.

Let xB�` equal one if bank a chooses to compete for agents with credit score � in

location ` in region R and zero otherwise. Let rB�` be the gross interest rate that bank

a o¤ers if xB�` = 1. We assume this rate does not exceed the gross project return �,

since o¤ering a rate above � is equivalent to not making an o¤er. If the agent did not

receive an o¤er from bank a, then she is willing to pay bank b her gross project return

�. Thus, with the convention that rB�` equals � whenever bank a does not compete,
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rB�` equals the willingness to pay of any agent. We assume there is an in�nitesimal

chance that the secondary loan market will be disrupted, forcing the bank to hold all

of its loans to maturity. Since only bank b observes an agent�s private type �, this

implies that a threshold strategy is optimal: bank b will bid rB�` (and win) as long as

an agent�s private type � exceeds a threshold �B�` of bank b�s choosing. Otherwise,

bank b will not bid.

The banks swap roles with respect to agents who live in region A. Let xA�` equal

one if bank b chooses to compete for agents in region A with credit score � and

location `, and zero otherwise. Let rA�` � � equal bank b�s bid in period 1 if x�` = 1;

set rA�` = � otherwise. In period 2, bank a responds by choosing thresholds �A�` such

that it will lend an agent in region A at interest rate rA�` if and only if the agent�s

private type � exceeds �A�`.

Let CBa and X
B
a be the capital cost and realized value, respectively, of bank a�s

loans to region B:

CBa =

Z 1

`=0

Z 1

�=0

xB�`H
�
�B�`j�; `

�
dG (�; `)

XB
a =

Z 1

`=0

Z 1

�=0

xB�`r
B
�`

"
�SB`

Z �B�`

�=0

�dH (�j�; `)
#
dG (�; `)

Thus, CBa is the integral, over all credit scores � and locations ` in region B in which

the bank competes (i.e., for which xB�` = 1), of the measure H
�
�B�`j�; `

�
of borrowers

to whom bank a lends. Likewise, XB
a is the integral, over all credit scores � and

locations ` in region B in which bank a competes, of the interest rate rB�` charged to

these borrowers times their mean probability of repayment (the expression in square

brackets).

Likewise, let CAa and X
A
a be the capital cost and realized value, respectively, of
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bank a�s loans to region A:

CAa =

Z 1

`=0

Z 1

�=0

�
1�H

�
�A�`j�; `

��
dG (�; `)

XA
a =

Z 1

`=0

Z 1

�=0

rA�`

"
�SA`

Z ��`

�=�A�`

�dH (�j�; `)
#
dG (�; `)

The di¤erence between CAa and C
B
a re�ects the fact that bank a lends to borrowers in

region A whose private types exceed bank a�s minimum threshold �A�`, while it lends

to borrowers in region B if and only if (1) it chooses to compete for them (i.e., only if

xB�` = 1) and (2) their private types are below bank b�s minimum threshold �
B
�`. This

also explains the di¤erence between XA
a and X

B
a .

2.1.2 Period 2: Security Design Stage

In period 2, each bank designs one security. The number of shares of each security

is normalized to one. We describe this process from the point of view of bank a;

bank b�s problem is analogous. First, bank a decides what portion of the loans of

each identi�able group of borrowers to securitize: to include in the pool of assets

that underlie its security. Bank a does not know the private types of its borrowers

in region B. Hence, for any given credit score � and location `, it must securitize

the same proportion of loans to each type � 2
�
0; �B�`

�
of borrower in region B. Let

this proportion be pB�`.

As for region A, since a borrower�s private type � is observed by bank a but not

by the market, bank a will securitize a loan if and only if the borrower�s private type

� is less than some threshold �A�`, which must be at least as high as the minimum

private type �A�` of borrowers in region A to whom the bank lends. The realized value

of bank a�s securitized loans is Ya = Y A
a + Y B

a where

Y A
a =

Z 1

`=0

Z 1

�=0

rA�`

"
�SA`

Z �A�`

�=�A�`

�dH (�j�; `)
#
dG (�; `) (2)
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is the realized value of the bank�s securitized local loans and

Y B
a =

Z 1

`=0

Z 1

�=0

pB�`x
B
�`r

B
�`

"
�SB`

Z �B�`

�=0

�dH (�j�; `)
#
dG (�; `) (3)

is the realized value of the bank�s securitized remote loans. One obtains Y A
a from

XA
a by replacing the supremum ��` of private types � in XA

a with the upper bound

�A�` on private types � who are securitized. Similarly, one obtains Y B
a from XB

a by

multiplying the integrand of the outer double integral in XB
a by the proportion p

B
�` of

loans that are securitized.

After choosing which loans to securitize, each bank i = a; b chooses a function 'i

which determines the ultimate payment per share made by the bank to a holder of

its security as a function of the realized loan repayments Yi of bank i�s securitized

borrowers. We call 'i (Yi) the payout of the security. As in DeMarzo and Du¢ e

[10], we assume that 'i is a nondecreasing function and that both the bank and the

market have limited liability: 'i (y) 2 [0; y] for all y � 0.

There is symmetric information at the security design stage. Why? Let R (i)

denote the region in which bank i 2 fa; bg is located. While the thresholds �R(i)�` and

�
R(i)
�` are the private information of bank i = a; b, the market can infer the values Y A

i

and Y B
i of bank i�s securitized local and remote loans that result from each pair of

factor vectors
�
�A; �B

�
in the following way. First, we assume the market observes

the measure 1 � H
�
�
R(i)
�` j�; `

�
of bank i�s local borrowers for each credit score �

and location `, as well as the proportion
H
�
�
R(i)
�` j�;`

�
�H

�
�
R(i)
�` j�;`

�
1�H

�
�
R(i)
�` j�;`

� of these borrowers

whom bank i securitizes. From these quantities, the market can infer the values

H
�
�
R(i)
�` j�; `

�
and H

�
�
R(i)
�` j�; `

�
of the distribution function H at the two thresholds.

We also assume that for each region R, the market observes the interest rates rR�`, the

lending choices xR�`, and the remote securitization proportions p
R
�`. The market can

then use equations (2) and (3), or the corresponding equations for bank b, to compute

Y A
i and Y B

i for any factor vectors �A and �B.
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2.1.3 Period 3: Signalling Stage

In period 3, the banks and investors �rst see a common public signal � 2 <M , with

unconditional distribution function 
. Each bank i then sees a private signal ui 2 <N+
of its local factor vector �R(i) 2 (0; 1)K . The local factor vector �R(i) and the local

signal ui are drawn from a joint density 

�
�R(i); uij�

�
, which can depend on the

public signal � as indicated by the notation. However, conditional on the public

information �,
�
�A; ua

�
and

�
�B; ub

�
are independent: the realization of

�
�A; ua

�
adds no information about the distribution of

�
�B; ub

�
and vice-versa. This is a

�exible yet tractable way to permit common or correlated shocks to the two regions.

Let the distribution function of the private signal ui conditional on the public

signal � be 	(uij�). We assume that for all public signals �, private signals ui close

to the zero vector are observed with strictly positive probability:

inf
�
ui 2 <N+ : 	

�
uij�

�
> 0
	
= 0:

Let �
�
�R(i)jui; �

�
be the conditional distribution of the factor vector �R(i) given

the private signal ui and the public signal �. A higher private signal ui raises this

distribution in the sense of �rst order stochastic dominance: if u0 � u00, then for all

�, � (�ju0; �) � � (�ju00; �). This implies that for any public signal �, the worst news

bank i can get about its security payout 'i (Yi) occurs when its private signal u
i is

zero. Finally, we assume that the conditional distribution �
�
�R(i)jui; �

�
is mutually

absolutely continuous with respect to the signals (ui; �).18

The assumption that the density 
 and distributions	 and � are region-independent

is for notational convenience. They could be replaced by 
R, 	R, and �R with no

change in the results, except for the proliferation of regional superscripts throughout

the paper.

After seeing their signals, the banks choose quantities of their securities to sell.

18This means that the set of realizations of the factor vector �R(i) that can occur with positive

probability is independent of the signals ui and �.
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Bank i�s quantity is denoted qi 2 [0; 1]. The market (which also sees the public

signal �) uses Bayes�s rule to assign a price pi = E ['i (Yi) jqa; qb; �] to the security of

bank i = a; b. This is a nonstandard signalling game since the market rationally uses

information about bank i�s quantity qi to infer information about bank i�s signal ui,

which may be relevant to the value of bank j�s security (as it may include some loans

to borrowers in bank i�s region).

2.1.4 Period 4: Settlement Stage

In period 4, each borrower repays her loan if and only if her project succeeds. These

repayments determine the value Yi of bank i�s loan portfolio. Bank i then pays the

liquidating dividend 'i (Yi) to its investors. While periods 1 through 3 occur at the

same point of real time, there is a unit of delay between periods 3 and 4.

2.2 Payo¤s

A borrower who pays interest rate r gets � � r if her project succeeds and zero

otherwise. The banks are liquidity constrained: the discount factor of security buyers,

which we normalize to one, exceeds the discount factor of the banks, which is denoted

� 2 (0; 1).19 The two banks have the same cost of capital, which is normalized to one.

In particular, suppose a bank lends c1 units of capital in period 1 to borrowers who

later repay the bank c4 in period 4. Assume, moreover, that investors pay the bank

c3 in period 3 in return for a security that obligates the bank to pay the investors

c04 in period 4. Then the payo¤ of investors in the bank�s security is c04 � c3, while

the bank�s payo¤ equals c3 � c1 + � (c4 � c04): its securitization proceeds c3, less its

capital cost c1, plus its discounted loan repayments �c4, less its discounted payment

19This assumption, common in the prior literature, is thought to capture the typical reason cited

for why banks sell loans: the availability of attractive alternative investments together with the

existence of regulatory capital ratios (e.g., Gorton and Haubrich [16, §III.B]).
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�c04 to holders of its security. We assume the investors have at least 2� in capital to

invest.20

2.3 Summary

We now brie�y summarize the key features of the model. We focus on region B;

analogous choices are made simultaneously in region A with the banks�roles swapped.

Consider the group of agents with a given credit score � and location `. In period 1,

bank a either o¤ers each such agent a loan at the common interest rate rB�` 2 [0; �] or

refrains from competing (whence we set rB�` = �). Bank b then lends, at the interest

rate rB�`, to those agents in the group whose private types exceed a threshold �
B
�` of

bank b�s choosing. Agents with lower private types accept a�s o¤er, if any.

In period 2, bank a chooses a proportion pB�` 2 [0; 1] of its loans to the group

to securitize. Bank b securitizes its loans to group members whose private types

fall below a threshold �B�` of bank b�s choosing Each bank i also speci�es a payout

function 'i.

In period 3, each bank i = a; b sees a signal ui of its local factor vector and then

chooses a quantity qi 2 [0; 1] of shares to sell. The market rationally assigns a price

pi to bank i�s security using Bayes�s rule. In period 4, project returns are realized

and successful borrowers repay their loans. Each bank i then pays 'i (Yi) per share

to its security holders, where Yi equals the repayments of bank i�s securitized loans.

3 Base Model: No Securitization

We �rst analyze a base model without securitization: banks must hold all of their

loans to maturity. Bank a�s payo¤ in the base model is simply its discounted loan

repayments less its cost of lent capital: �E
�
XA
a +XB

a

�
�CAa �CBa . Bank b�s payo¤

20Since each region has a unit measure of loan applicants, each with a project that returns � if it

succeeds, the securities of the two banks cannot be worth more than 2� to the market.
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is analogous. In particular, if a bank lends, at a gross interest rate r, to a borrower

with credit score � and private type � living in location ` in region R 2 fA;Bg, its

expected pro�t is �r��E
�
SR`
�
� 1: the discounted interest payment �r times the

probability ��E
�
SR`
�
of project success, less the unitary cost of capital.

In the base model, banks lend only to local agents and extract the full surplus.

This is due to the winner�s curse: the banks have the same expected payo¤ from

lending to a given agent, but the agent�s local bank has superior information about

this payo¤. Since, by assumption, the local bank makes the second o¤er, it will

slightly underbid the remote bank on pro�table loans but refrain from bidding on

unpro�table ones. Knowing this, a bank will not make any o¤ers to agents who are

not in its region.

Claim 4 Without the option of securitization, each bank lends only to agents who

reside in its own region. Moreover, each borrower�s payo¤ is zero: the gross interest

rate on every loan equals the gross project return �. An agent gets a loan if and

only if her discounted expected gross project return, ����E
�
SR`
�
, exceeds the bank�s

unitary cost of capital.

Without securitization, an agent gets a loan if and only her expected project

return exceeds a common threshold. Hence, the allocation of capital to projects is

e¢ cient: one agent receives a loan while another does not if and only if the �rst

has a higher expected project return than the second. This e¢ ciency property will

not hold with securitization, since a bank may prefer not to lend to a creditworthy

agent whom it knows well. Intuitively, the bank�s private information about this

borrower�s repayment probability worsens the lemons problem the bank faces in selling

its security.

Our conclusion that all lending is local and the loan allocation is e¢ cient relies on

our assumption that the remote bank makes the �rst o¤er, followed by the local bank.

However, Sharpe [31] obtains the same result with the reverse timing. He assumes
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that the remote bank sees not the local bank�s o¤er but rather its o¤er function: the

function from the local bank�s signal to its interest rate. If, in addition, the remote

bank has no private information about the applicant, then the local bank always posts

an o¤er function that is low enough to make it unpro�table for the remote bank to

compete because of a winner�s curse (Sharpe [31, Proposition 2, p. 1078]).

4 Full Model

We now turn to the full model, with securitization. We �rst show that the signalling

subgame has a unique separating equilibrium. We then derive formulas for a bank�s

bene�t of securitizing a given loan and of lending to a given borrower when securi-

tization is an option. Finally, we show that any equilibrium of the full model must

have a certain intuitive form. We then turn to several computed examples.

4.0.1 The Signalling Subgame

Let �i (u
i; uj; �) = E ['i (Yi) jui; uj; �] be the expected payout of the security of bank

i 2 fa; bg, conditional on the signals. (�j�refers to the other bank.) Let pi (qi; qj; �)

be the price o¤ered by the market per unit of bank i�s security as a function of the

quantities of shares sold by the two banks and the public signal. Bank i�s expected

securitization pro�ts �i (ui; qi; �), conditional on its signal ui and quantity qi and the

public signal � equal the expectation (over all opposing signal vectors uj) of bank i�s

gross revenue qipi (qi; qj (uj) ; �) from selling qi units of the security less its discounted

expected payment to the buyers, �qi�i (u
i; uj; �):

�i
�
ui; qi; �

�
=

Z
uj2<N+

�
qi
�
pi
�
qi; qj

�
uj
�
; �
�
� ��i

�
ui; uj; �

���
d	
�
uj
�
:

De�nition 5 A Bayes-Nash equilibrium of this game is a pair (qa; qb) of measurable

quantity functions and a pair (pa; pb) of measurable price functions such that:
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1. for i = a; b, qi (ui; �) 2 argmaxq �i (ui; q; �) almost surely;

2. for i = a; b, pi (qi (ui) ; qj (uj) ; �) = E [�i (u
i; uj; �) jqi (ui) ; qj (uj) ; �] almost

surely;

The equilibrium is separating if, in addition,

3. for i = a; b, pi (qi (ui) ; qj (uj) ; �) = �i (u
i; uj; �) almost surely.

We restrict to separating equilibria, which satisfy conditions 1 and 3 above. This

restriction uniquely determines the banks� behavior and pro�ts. Let b�i (ui; �) =R
uj2<N+

�i (u
i; uj; �) d	(ujj�) and �i (ui; �) = �i (ui; qi (u

i; �) ; �) be bank i�s expected

security payout and securitization pro�ts, both conditioned only on bank i�s signal

ui and the public signal �. (In general, �i (ui; �) may depend on the equilibrium.)

The following characterization extends the result of DeMarzo and Du¢ e [10, eq. (4),

p. 79, and Prop. 10, p. 88], which assumes a single bank, to the case of two banks.21

Claim 6 The above double signalling game has a unique separating equilibrium. In

it, bank i�s expected securitization pro�ts conditional on its signal ui and the public

signal � are �i (ui; �) = (1� �) b�i (0; �) 1
1�� b�i (ui; �)� �

1�� . Moreover, each bank i�s

optimal security design is debt: 'i (Yi) = min fmi; Yig for some mi 2 <+.

4.0.2 The Bene�ts of Securitization

Consider either bank i 2 fa; bg. By Claim 6, the realized payout of the bank�s security

is min fmi; Yig where Yi = Y A
i + Y

B
i is the realized value of bank i�s securitized loans

and mi is the face value (promised repayment) of the security. Consequently, the

expected payout b�i (ui; �) of bank i�s security given its signal ui and the public signal
� is E [min fmi; Yig jui; �]. Bank i�s expected payo¤ �i is the discounted expected

return of its loans, less its cost of lending, plus its net securitization pro�ts. By

21It is easy to see that this result generalizes to any �nite number of banks.
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Claim 6,

�i = �E
�
XA
i +XB

i

�
� CAi � CBi + (1� �)E

 b�i (0; �) 1
1��b�i (ui; �) �
1��

!

In order to understand bank i�s incentives to lend to a given agent, one must �rst

consider its bene�t from securitizing the agent�s loan. To study this, we hold �xed

the bank�s loan portfolio, and consider the e¤ect of adding a single in�nitesimal loan

to the bank�s security.

Suppose the recipient of this loan has credit score � and private type �, and

lives in location ` in region R 2 fA;Bg.22 Let r be the gross interest rate that

she must pay if her project succeeds, which occurs with probability ��SR` . By

Claim 6, and the law of iterated expectations, bank i�s expected securitization pro�ts

are (1� �)E
h
E
�b�i (0; �) 1

1�� b�i (ui; �)� �
1��
�����i, where the outer expectation is taken

with respect to the public signal � and the inner conditional expectation is taken with

respect to the private signal ui. The e¤ect, on the bank�s pro�ts �i, of adding the

borrower to the bank�s security is thus

��i = (1� �)E

"
E

 b�i (0; �) 1
1��b�i (ui; �) �
1��

 
�b�i (0; �)b�i (0; �) � �

�b�i (ui; �)b�i (ui; �)
!������

!#
: (4)

where for any quantity Q, �Q denotes the change in Q that results from adding the

loan.

The terms �b�i (0; �) and �b�i (ui; �) measure the loan�s e¤ect on the expected
gross return b�i (ui; �) = E [min fmi; Yig jui; �] of the security in two cases: when the

bank�s private signal is zero, and when it takes a generic value ui. In particular,

by Claim 6, adding the loan is bene�cial insofar as it raises the gross return of the

security in the worst case, or lowers it in the generic case. Since higher signals ui

entail higher values of Yi in a �rst order stochastic dominance sense, b�i (0; �) cannot
22We assume that the market knows the private type � since it can infer the set of private types

that each bank securitizes (p. 15).
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exceed b�i (ui; �). Thus, roughly speaking, loans that shrink (raise) the gap betweenb�i (ui; �) and b�i (0; �) must raise (lower) the bank�s securitization pro�ts.
The term �b�i (ui; �) = �E [min fmi; Yigjui; �] measures the e¤ect of the loan

on the bank�s expected payment to its security holders, conditional on the signals ui

and �. This e¤ect occurs entirely through the loan�s impact on the realized value

Yi of the bank�s securitized loans. First, the security defaults when its face value

mi exceeds the value Yi of the underlying loans. In this event, the loan raises the

security payout by �Yi. Second, the loan lowers the chance of default by raising the

realized value of the loan portfolio Yi when this value lies slightly below the face value

of the security, mi. This e¤ect is approximately equal to the product of two terms:

the loss mi � Yi from default and the probability that Yi is slightly below mi. Since

both terms are close to zero, this second e¤ect is zero to �rst order. Hence, the only

e¤ect is the �rst:

�b�i �ui; �� = E
�
1 (mi > Yi)�Yijui; �

�
; (5)

where 1 (mi > Yi) equals one if mi > Yi (if the security defaults) and zero otherwise.

Finally, by (1), the increase in the value Yi of the underlying assets from adding

the borrower is a weighted sum of the macroeconomic factors �Rk that a¤ect region R:

�Yi = r��SR` = r��
KX
k=1

�Rk`�
R
k : (6)

Substituting (5) and (6) into (4) and using Claim 6, we �nd that the e¤ect of securi-

tizing the additional borrower on the bank�s payo¤ is

��i = r��
Ri`; (7)

where


Ri` = E
�

Ri` (�)

�
; (8)


Ri` (�) = E
�
�i
�
ui; �

�
j�
� KX
k=1

�Rk`
�
�R0ik (�)� ��Rik (�)

�
;
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�R0ik (�) = E

 
E
�
1 (mi > Yi) �

R
k

��ui = 0;��b�i (0; �)
������
!
,

and

�Rik (�) = E

 
�i (ui; �)

E (�i (ui; �)j�)
E
�
1 (mi > Yi) �

R
k

��ui; ��b�i (ui; �)
������
!
:

By (7), pro�ts from securitizing the loan are the product of four terms. The �rst is

the gross interest rate r: ceteris paribus, it is more pro�table to securitize loans that

have a higher face value. The second is �: it is more pro�table to securitize the loans

of borrowers with higher credit scores. The third is �: borrowers with high private

types are also more pro�table. The �nal term is 
Ri` which, by construction, must

equal the change in securitization pro�ts from adding a loan for which the product

r�� of the �rst three terms equals one.

By (8), 
Ri` is the expectation, over all public signals �, of the change 

R
i` (�) in

securitization pro�ts from adding a loan for which the product r�� = 1 and the public

signal is �. 
Ri` (�), in turn, is the product of the bank�s conditional (on the public

signal �) expected securitization pro�ts E [�i (ui; �) j�] and the sum, over all factors

k, of the borrower�s factor loading �Rk` times the scaled di¤erence between two terms:

�R0ik (�) and ��
R
ik (�).

The term �R0ik (�) is the proportional increase in the lowest conditional expected

security payout, b�i (0; �), that results from increasing the value Yi of the security�s

underlying assets by one dollar with probability �Rk .
23 Thus,

PK
k=1 �

R
k`�

R0
ik (�) cap-

tures the additional loan�s proportional e¤ect on this worst-case security payout that

is due to the loadings �Rk` of the borrower�s repayment probability on various macro-

economic factors �Rk . Likewise, �
R
ik (�) is a weighted average over signal vectors u

i of

the proportional increase in the conditional expected security payout b�i (ui; �) that
results from increasing the value Yi of the security�s underlying assets by one dollar

with probability �Rk . Thus,
PK

k=1 �
R
k`�

R
ik (�) captures the proportional e¤ect of the

23In the numerator of �R0ik (s), the default indicator variable 1 (mi > Yi) is present because the

additional borrower a¤ects the security value only in the event of default.
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additional loan on this weighted average security payout that results from the loadings

of the borrower�s repayment probability on the various macroeconomic factors that

a¤ect region R.

By Claim 6, for any public signal �, the bank�s securitization pro�ts are increas-

ing in the expected security payo¤ conditional on the worst signal vector ui = 0 and

decreasing in the expected security payo¤ for a generic signal vector ui. For this rea-

son, �R0ik (�) enters positively in 

R
i` (�) while �

R
ik (�) enters negatively. The discount

factor � multiplying �Rik (�) captures the bank�s preference for liquidity: the lower

is �, the stronger are the bank�s liquidity needs, and thus the more likely it is that

securitizing the additional loan will be worthwhile.

The above results allow us to derive a concise expression for the total expected

gross return to bank i 2 fa; bg from lending to an agent with credit score � and

private type � who lives in location ` in region R 2 fA;Bg, when securitization is an

option. This expected return has two parts. The �rst is the expected discounted

loan repayment by the borrower, �r��E
�
SR`
�
: the discounted interest rate �r times

the probability ��E
�
SR`
�
that the loan will be repayed. The second is the value of

the bank�s option to securitize the loan. By (7), bank i earns an additional r��
Ri`

from securitizing the agent�s loan, which it will do if and only if 
Ri` > 0. For any

real number c, let c+ denote the positive part of c: c+ = max f0; cg. The value of

the securitization option is r��
�

Ri`
�+
, so the bank�s gross return from lending to the

borrower is

r��
h
�E
�
SR`
�
+
�

Ri`
�+i

: (9)

Bank i knows the private type � of the borrower only if she lives in the bank�s

home region. This is a disadvantage of remote lending. However, there is also

a potential advantage: the bank does not have private information about remote

shocks. Hence, it faces a lemons problem in reselling local loans but not remote

loans. In addition, the bank has a preference for liquidity: � < 1. For the last two
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reasons, it is always pro�table to securitize a remote loan:

Claim 7 Let i 6= j be the two banks. In any equilibrium, it is pro�table for bank i

to securitize all of its remote loans: 
R(j)i` > 0.

4.0.3 Main Results

We present results for region B. Identical results hold for region A upon replacing

�a�with �b�and vice versa. Let rB��` denote the deterring rate: the interest rate,

o¤ered by bank a, that makes bank b just willing not to lend to the agent with the

highest private type (for whom � = ��`) among those with credit score � living in

location ` in region B. By equation (9), bank b�s gross expected return from lending

to this borrower at the interest rate r is r���`
h
�E
�
SB`
�
+
�

Bb`
�+i

. Setting this equal

to the bank�s unitary cost of capital and solving for r, we obtain the deterring rate:

rB��` = (���`)
�1
h
�E
�
SB`
�
+
�

Bb`
�+i�1

> 0: (10)

Now consider the set of borrowers with credit score � in location ` in region B.

No Cream Skimming implies that if bank a competes for these borrowers, it prefers to

lend to all of them: to prevent bank b from skimming the best (highest-�) borrowers

in the group. This requires bank a to bid an interest rate that is no higher than the

deterring rate rB��` . In addition, bank a cannot charge more than the gross project

return �, which is the most any borrower will pay. On the other hand, any interest

rate below the lesser of � and rB��` permits bank a to capture all of the borrowers in

this group. Hence, if bank a competes for these borrowers, it will o¤er the interest

rate rB�` = min
�
�; rB��`

	
. By equation (9), Claim 7, and the fact that E (�j�; `) = 1,

bank a�s pro�ts from lending a unit of capital to this group are

�B�` = min
�
�; rB��`

	 �
�E
�
SB`
�
+ 
Ba`

�
� � 1: (11)

Our �rst result, which does not assume Limit Irrelevance, is as follows.
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Theorem 8 Consider the group of agents with credit score � in location ` in region

B.

1. Suppose �B�` < 0. In this case,

(a) bank a does not compete for this group;

(b) if bank b�s estimate �� of an agent�s type � exceeds
�
�
h
�E
�
SB`
�
+
�

Bb`
�+i��1

,

bank b o¤ers her a loan at an interest rate equal to the gross project return

�, and the agent accepts.24 Else bank b does not o¤er the agent a loan.

Bank b securitizes all borrowers in this group to whom it lends if 
Bb` > 0

and none of them if 
Bb` < 0.

2. Suppose �B�` > 0. In this case,

(a) bank a o¤ers to lend to each agent in the group at the common interest

rate rB�` = min
�
�; rB��`

	
;

(b) bank b makes no o¤ers to this group;

(c) all agents in the group accept bank a�s o¤er; and

(d) bank a securitizes all of them.

Consider the set of borrowers in a given location ` in region B. Theorem 8

characterizes the outcome, in the loan market, of borrowers with a given credit score

� in this set. It does not show how this outcome varies by the credit score �. We

now turn to this important question.

The key di¢ culty is that bank a�s pro�t �B�` from lending is not necessarily

monotonic in the agent�s credit score �. This pro�t is increasing in the deterring rate

rB��` (equation (11)) which, in turn, is decreasing in the supremum ��` of the agent�s

possible private types � (equation (10)). However, we have not speci�ed how the

24By de�nition, �� = E (�jspriv ; spub ; `) (p. 9).
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supremum ��` varies with the credit score �. Limit Irrelevance pins this down in a

particular way: ��` equals the inverse of the credit score �.25 By (10), the deterring

rate, which we now call simply rB�` , is independent of the credit score �:

rB�` =
h
�E
�
SB`
�
+
�

Bb`
�+i�1

: (12)

We now present our second result.

Theorem 9 Assume Limit Irrelevance. De�ne the threshold

�B` =
1

min f�; rB�` g [�E (SB` ) + 
Ba`]
: (13)

1. If � < �B` , then �
B
�` < 0: bank a does not compete for this group. If bank b�s

estimate �� of an agent�s type � exceeds
�
�
h
�E
�
SB`
�
+
�

Bb`
�+i��1

= rB�` =�,

bank b o¤ers her a loan at an interest rate equal to the gross project return �,

and the agent accepts. Else bank b does not o¤er the agent a loan. Bank b

securitizes all borrowers in this group to whom it lends if 
Bb` > 0 and none of

them if 
Bb` < 0.

2. If � > �B` , then �
B
�` > 0: bank a o¤ers all borrowers in this group the same

interest rate min
�
�; rB�`

	
. Bank b does not compete and all agents accept bank

a�s o¤er. Moreover, bank a securitizes all loans to this group.

Proof. By Limit Irrelevance, ��` = 1=�, so rB��` = rB�` . By equations (11) and

(13), �B�` = �=�B` � 1. Hence, �B�` ? 0 as � ? �B` . The rest follows from Theorem 8

and equation (12).

Under Limit Irrelevance, bank a lends to an agent in region B if and only if her

credit score � exceeds the location-dependent credit threshold �B` . This threshold is

decreasing in bank a�s securitization pro�ts, as captured by
Ba`, and weakly decreasing

in bank b�s securitization pro�ts, as captured by
�

Bb`
�+
. If bank a�s securitization

25This is because ��` = ��1 supsp r iv E [�jspub ; spriv ; `] = 1.
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pro�ts are low relative to those of bank b, it is harder for bank a to compete with

bank b. Bank a responds by competing for fewer borrowers in location `: it raises

its threshold.26

By part 2 of Theorem 9 and equation (12)), bank a o¤ers the interest rate

min

�
�;
h
�E
�
SB`
�
+
�

Bb`
�+i�1�

if an agent�s credit score is above a�s threshold. This

is weakly decreasing in bank b�s securitization pro�ts, as captured by
�

Bb`
�+
.27 In-

tuitively, if bank b is eager to securitize loans to the given location, then bank a must

o¤er a low interest rate in order to keep bank b out.

A key prediction of Theorem 9 is that a bank will use a credit score threshold in

deciding on remote loan applications. This feature survives a considerable weakening

of Limit Irrelevance. As long as bank a�s pro�t �B�` equals zero at a unique value of

�, a threshold policy is optimal.28 By equations (10) and (11), a su¢ cient condition

for this is that ��` - the maximum proportional increase in the agent�s expected type

� that comes from learning her private signal �priv - be decreasing in �. This seems

plausible; for instance, knowing that a loan applicant comes from a good family would

seem to raise her chances of repaying a loan by a smaller proportion if her credit record

is already quite strong.

5 Illustrations

We now discuss the implications of Theorem 9 for the e¤ects of securitization, com-

parative statics, and e¢ ciency under Limit Irrelevance. We illustrate these results

in a series of �gures. The �gures - but not the discussion - rely on the following

additional assumptions.

26This occurs, in particular, if location ` in region B has low loadings on factors about which bank

b will be well informed when it decides how much of its security to sell.

27By part 2 of Theorem 9 and equation (12)), bank a o¤ers the interest rate

28If it crosses zero, it must cross from below since �B0` = �1.
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A1 Bank b would lend to some agents in the absence of securitization: its discounted

return ��E
�
SB`
�
from lending to the best agent (for whom �� = 1) exceeds the

bank�s unitary cost of capital. By equation (12), this implies that the deterring

rate rB�` is less than the gross project return �, so bank a lends at the deterring

rate. Hence, by equations (12) and (13), bank a�s credit score threshold under

securitization is

�B` =
�E
�
SB`
�
+
�

Bb`
�+

�E (SB` ) + 

B
a`

: (14)

A2 Bank b bene�ts from securitization: 
Bb` > 0.

A3 Bank a bene�ts more than bank b from securitization: 
Ba` > 

B
b`: Without this

condition, �B` � 1, so bank a will not lend in the location.

In Figure 1, each agent in the location corresponds to a point in the unit square.29

The agent�s credit score �, which equals bank a�s estimate of her type �, appears on

the horizontal axis. Bank b�s estimate �� of � appears on the vertical axis.30 While

bank a sees only an agent�s horizontal coordinate, bank b sees both.

In the absence of securitization, agents in areas A0 and A3 borrow from bank b at

the interest rate �, while other agents do not get loans (Claim 4). With securitization,

agents in areas A3 and A4 borrow from bank a at the deterring rate rB�` < �, while

those in areas A0 and A1 get loans from bank b at the interest rate �.

5.1 The E¤ects of Securitization

A comparison of Claim 4 and Theorem 9 reveals the following e¤ects of securitization,

which are discussed in section 1.

29The applicants are not uniformly distributed throughout the square.

30While the �gure permits � and �� each to take any value in the unit interval, some of these

values may have zero probability.
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Figure 1: E¤ects of Securitization under Limit Irrelevance. A given location ` in

region B is depicted. The credit rating � appears on the horizontal axis while bank

b�s estimate �� of an applicant�s type � is depicted on the vertical axis. The �gure

assumes that ��E
�
SB`
�
> 1 and 
Ba` > 


B
b` > 0. Without securitization, applicants in

regions A0 and A3 receive loans from bank b at the interest rate �. Those in regions

A1, A2, and A4 do not receive loans. With securitization, applicants in regions A3

and A4 receive loans from bank a at the interest rate rB��` < �. Applicants in regions

A0 and A1 receive loans from bank b at the interest rate �, while applicants in region

A2 do not receive loans.
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1. Securitization Stimulates Lending. By connecting agents with liquid in-

vestors, securitization expands the set of borrowers.31 In Figure 1, areas A1

and A4 are added.

2. Securitization Favors Remote Lending. Remote bank a lends to location

` only if it can securitize its loans.

3. Remote Borrowers have Strong Observables but High Conditional

Default Rates. In Figure 1, the applicants who get remote loans are those

whose credit scores � exceed bank a�s threshold �B` : they have strong observ-

ables. Now consider an otherwise identical neighborhood `0 in which the bank

a�s securitization pro�ts 
Ba`0 are higher than in location `. This raises bank

a�s threshold: �B`0 > �B` . The only applicants who are a¤ected are those whose

credit scores � lie between the two thresholds. In location `, these applicants

all get remote loans. In location `0 they get local loans, but only if bank b�s

estimate �� of their type is at least
�
�
�
�E
�
SB`
��
+
�

Bb`
�+��1

> 0. Thus,

ceteris paribus, a remote borrower with a given credit score � has an expected

type �� that is no higher, and sometimes strictly lower, than the expected type

of a local borrower with the same credit score.

4. Securitization Lets Borrowers with Strong Observables Get Cheap

Remote Loans. Securitization lowers the interest rate paid by agents with

high credit scores (above �B` ) to min
�
�; rB�`

	
while leaving unchanged the in-

terest rate � paid by agents with lower credit scores.

5. Securitization Raises Conditional and Unconditional Default Rates.

Securitization expands lending to a set of borrowers (in Figure 1, those in areas

A1 and A4) whose expected types �� are uniformly lower than those of agents

31All e¤ects described in sections 5.1 through 5.4 are intended in the weak sense: the set of

borrowers weakly increases, etc. In the �gures, these e¤ects are strict.
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who borrow without securitization (those in areas A0 and A3). This raises both

conditional (on �) and unconditional default rates.

6. Securitized Loans Have Higher Conditional Default Rates then Re-

tained Loans. For any given credit score �, securitized loans have higher

mean default rates than retained loans. More precisely, let us compare two

locations ` and `0 in region B. Assume bank b securitizes its loans to location

`0 but not to location `: 
Bb` < 0 < 

B
b`0. In all other respects, the two locations

are identical. The comparison is depicted in Figure 2. For credit scores below

�B` , retained loans consist of area A0 in location `, while securitized loans consist

of areas A0 and A1 in location `. For each credit score, the securitized loans

have a lower conditional expected type �� than the retained loans. For credit

scores above �B` , all loans are securitized in both locations. Hence, for each

credit score � for which there are retained loans in one location and securitized

loans in the other, the latter group has a higher conditional default rate.

5.2 Higher Securitization Pro�ts for the Local Bank

Suppose bank b�s securitization pro�ts rise from 
Bb` to e
Bb`. Since it is now harder

to deter bank b from cream-skimming, bank a does so less often: it raises its credit

score threshold from �B` to e�B` = �E(SB` )+(e
Bb`)+
�E(SB` )+
Ba`

(equation (14)). Theorem 9 implies

the following e¤ects, which are illustrated in Figure 3.

1. Relatively More Local Lending. Bank b lends more, while bank a lends

less. In Figure 3, Bank b picks up borrowers in areas A2 and A5. Bank a stops

lending to areas A4 through A6 and is left with only A7 and A8.

2. More Lending to Diamonds in the Rough. The set of borrowers grows to

include those with credit scores below a�s threshold �B` , whose expected types

lie between b�s new and old thresholds. This is area A2 in Figure 3. They are
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Figure 2: Retained Loans Have Lower Expected Default Rates. Two locations `

and `0 in region B are depicted. The credit rating � appears on the horizontal axis

while bank b�s estimate �� of an applicant�s type � is depicted on the vertical axis.

The �gure assumes that E
�
SB`
�
= E

�
SB`0
�
, ��E

�
SB`
�
> 1, 
Ba` = 
Ba`0 > 0, and


Bb` < 0 < 
Bb`0. For credit scores below �B` , retained loans consist of area A0 in

location `, while securitized loans consist of areas A0 and A1 in location `. For

credit scores above �B` , all loans are securitized in both locations. Hence, for each

credit score �, retained loans (if there are any) have a higher expected type �� than

securitized loans.
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Figure 3: E¤ect of Increase in Bank b�s Securitization Pro�ts from 
Bb` to e
Bb`. The

conditions of Figure 1 are assumed to hold before and after the increase, which raises

bank a�s threshold from �B` to e�B` . Bank a, which initially lent to areas A4 through
A8, now only lends to areas A7 and A8 and charges a lower interest rate to this group.

Bank b adds areas A2, A4, and A5 to its initial borrower pool of A0 and A1.
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diamonds in the rough: while their credit scores lie below bank a�s threshold,

their expected types are the highest among those who previously did not borrow.

3. Welfare Transfer from Good to Great Borrowers (in terms of observ-

ables). As bank a no longer competes for agents with credit scores between �B`

and e�B` , their interest rate rises from min
�
�; rB�`

	
to �. However, those with

scores above e�B` see their interest rate fall since the rate bank a must o¤er to
deter bank b is now lower (equation (12)).

5.3 Higher Securitization Pro�ts for the Remote Bank

Theorem 9 implies the following the e¤ects of an increase in bank a�s securitization

pro�ts from 
Ba` to b
Ba`. These are illustrated in Figure 4, where b�B` denote bank a�s
new, lower credit score threshold.

1. Relatively More Remote Lending. Bank a lends more, while bank b lends

less. In Figure 4, a picks up borrowers in areas A3 through A5, while b stops

lending to areas A3 and A4 and is left with only A0 and A1.

2. Applicants with High Credit Scores Bene�t from More Loans. The

set of borrowers grows to include those with credit scores between bank a�s old

and new thresholds (area A5 in the �gure). Among agents who initially did not

get loans, these borrowers have the highest credit scores. These agents bene�t

since their interest rate, min
�
�; rB�`

	
, is lower than the project return �.

5.4 E¢ ciency E¤ects

We next turn to the e¢ ciency e¤ects of securitization. In order for loans to be

allocated e¢ ciently within each location, a resident of location ` in region R must

get a loan if and only if her expected project return ���E
�
SR`
�
exceeds a location-

speci�c threshold cR` . In order for the allocation also to be e¢ cient across locations
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Figure 4: E¤ect of Increase in Bank a�s Securitization Pro�ts from 
Ba` to b
Ba`. The
conditions of Figure 1 are assumed to hold before and after the increase, which lowers

bank a�s threshold from �B` to b�B` . Bank b ceases to lend to areas A3 and A4 and

now only lends to areas A0 and A1. Bank a adds areas A3 through A5, and A5 to its

initial borrower pool of A6 and A7. There is no change in the interest rates o¤ered

by the two banks.

37



and regions, this threshold must not depend on the location ` or region R. This is

true without securitization, where the threshold cR` equals �
�1 (Claim 4).

It is useful to restate the condition for within-location e¢ ciency as follows: an

agent gets a loan if and only if her expected type �� exceeds some location-speci�c

threshold ecR` .32 This holds without securitization, where only agents in areas A0 and

A3 get loans. However, with securitization it fails, since the threshold is zero if an

agent�s credit score exceeds �B` and r
B�
` =� > 0 otherwise.

This discussion reveals two types of ine¢ ciencies that are caused by securitization.

1. Public Information Bias. Since bank a relies exclusively on public signals

to screen agents, there is an ine¢ cient bias towards agents whose public infor-

mation is strong. In Figure 1, agents near the top of area A2, who are turned

down by both banks, are of higher quality than agents near the bottom of area

A4, who get loans from bank a.

2. Securitization Pro�t Bias. E¢ ciency requires that a bank consider only an

agent�s creditworthiness. However, in equilibrium a bank also prefers agents

who are more pro�table to securitize. For instance, we can reinterpret Figure 3

as comparing two locations in region B, in which bank b�s securitization pro�ts

are 
Bb` and the higher value e
Bb`, respectively. Agents in the top of A2 in the

former location are turned down, while agents in the bottom of the same area

in the latter region receive funding. In Figure 4, agents at the top of area A5

are turned down when bank a�s securitization pro�ts are 
Ba` while agents at

the bottom of the same area receive loans when these pro�ts take the higher

value b
Ba`. In both cases, e¢ ciency requires the opposite.
32In particular, ecR` equals cR` ��E �SR` ���1.
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6 Related Literature

While prior models have studied the interaction between a single bank�s securitization

and lending decisions, ours appears to be the �rst to study the e¤ect of securitization

on lending competition. We now discuss the relations between our work and this

prior research, as well as related work on security design and on lending competition

under adverse selection.

6.1 Lending with Securitization

Bubb and Kaufman [6] (BK) study a model with a single bank and a continuum of

loan applicants. The bank sees each applicant�s credit score. It can also engage

in costly screening, which reveals soft information about the applicant. Without

securitization, the bank lends to applicants with high scores and rejects those with

weak ones. It screens applicants with intermediate scores and lends to them if and

only if their soft information is positive. BK then introduce a monopsony loan buyer.

The buyer commits to buying a smaller fraction of loans to intermediate borrowers in

order to ensure that the bank will still screen them. In contrast, our model has many

small and unorganized security buyers, so such commitment is impossible. Rather,

a bank lends remotely in order to have less private information when it issues its

security. As a bank cannot discover a remote applicant�s soft information, remote

lending raises the default risk. In contrast, securitization does not raise defaults in

BK.

Hartman-Glaser, Piskorski, and Tchistyi [17] study the optimal design of mortgage-

backed securities by a lender who can exert costly hidden e¤ort to screen loan ap-

plicants. The model takes place in continuous time. Loans default according to a

Poisson process. The lender can lower the arrival rate of defaults at a cost. The

model is aspatial and features �xed loan terms and a single bank. In contrast, ours

is a spatial model with endogenous interest rates and two competing banks. While
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they study moral hazard, our focus is adverse selection.

Heuson, Passmore, and Sparks [19] (HPS) study a model in which applicants have

a continuum of publicly observable default probabilities. A bank chooses whether to

lend to an applicant and, if so, whether to securitize the loan. An investor then sets

the minimum such probability to accept a loan for securitization. In response, the

bank retains the best loans, securitizes intermediate loans, and doesn�t lend to the

worst borrowers. This mirrors the behavior of a bank towards its local applicants

in our model. While HPS study the problem of a single bank under symmetric

information, we assume two banks who face asymmetric information at both the

lending and securitization stages.

Chemla and Hennessy [7] (CH) also study a model of lending with securitization.

A bank can exert costly e¤ort to raise the chance that its loans will have a high return.

There are three types of investors. The �rst group are uninformed risk-averse hedgers

for whom the bank�s security is a utility-enhancing hedge against future endowment

risk. CH o¤er the example of future home buyers: when the economy booms, few

borrowers default on their mortgages, so the security has a high payo¤; but the boom

also raises house prices, so investors need more money. The security thus hedges

against housing market risk. There is also a wealthy, risk-neutral speculator who

sees a signal of the asset�s type and can exert costly e¤ort to increase the precision of

this signal. Finally, there is a continuum of risk-neutral �market makers�with deep

pockets.

For some parameters, the model has a pooling equilibrium in which the bank al-

ways securitizes all of its loans. It issues a senior tranche as well as an equity-like

mezzanine tranche that is attractive to the hedgers. The hedgers�demand stimulates

information acquisition by the speculator, since he can pro�t from the hedgers�igno-

rance. The resulting informed speculation increases the correlation of the security

price with its true value, which gives the bank an ex ante incentive to screen. This in-

centive can actually be stronger than in the separating equilibrium in which the bank
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issues more shares when quality is low. Thus, CH argue that securitization without

retention does not necessarily worsen the moral hazard problem, since tranching can

lead to informative prices that give the bank an incentive to screen.

Shleifer and Vishny [33] analyze a model in which banks have private information

about loan quality (which is either high or low) and must retain a �xed fraction of

the loan if they sell it. Loans are sold individually. Security prices are a¤ected

by investor sentiment. Since they assume symmetric information with irrational

investors, their model bears little relation to ours.

6.2 Security Design

Our paper is closely related to DeMarzo and Du¢ e [10] (DD). They study the

problem of a risk-neutral issuer who has a �xed portfolio of long term assets. The

issuer designs a single security, which consists of a portfolio of assets to securitize and

a payo¤ function: a map from the �nal value of this portfolio to the security�s payo¤.

The issuer then sees a private signal of the portfolio�s value and chooses a proportion

of the security to o¤er for sale to a continuum of uninformed, risk-neutral investors

who are more patient than the issuer. There is a unique separating equilibrium.

When the issuer�s signal is higher, it sells a lower proportion of the security and the

market responds with a higher price.

Signalling is costly since the issuer sells less of the security when the gains from

trade are greater. For this reason, the issuer�s goal at the design stage is to minimize

the sensitivity of its security�s payo¤ to its private information. DD show that

within the class of monotone, limited-liability securities, this sensitivity is minimized

by debt.33 Intuitively, debt pays its �xed face value when the value of its underlying

portfolio exceeds this value. If the debt defaults, it pays the value of its underlying

portfolio, which is as close to its face value as limited liability will allow. Hence,

33A security is monotone and limit-liability if its payo¤ function ' : <+ ! <+ is nondecreasing

and satis�es ' (y) 2 [0; y] for each realization y of the �nal value of the portfolio of securitized assets.
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the payo¤ function of debt is as �at as possible within the class of monotone, limited

liability payo¤ functions.34

In DD, the issuer�s initial asset portfolio is taken as given. The theoretical

contribution of our paper is to derive this portfolio as the endogenous result of lending

competition. We assume two regional banks who compete for borrowers. The

outcome of this competition determines each bank�s loan portfolio, which it then

securitizes as in DD. Each bank has private information about local applicants at

the lending stage. This gives local banks an advantage in competing for loans. Each

bank also observes a private signal of its local macroeconomic conditions prior to

issuing its security. This creates a lemons problem that favors remote lending.

Since a bank�s security can contain a mixture of local and remote loans, a bank�s

macroeconomic signal contains information about the value of the other bank�s secu-

rity. Hence, the quantity that a bank chooses to sell acts as a signal of the values

of both banks�securities. Nevertheless, DD�s single-issuer result generalizes: there

is a unique separating equilibrium, in which each bank�s payo¤ is the same as in the

single-issuer case. Moreover, each bank issues debt. We use this result to derive

rich implications for the composition of each bank�s loan portfolio.

Like DD, we assume each bank issues at most one security. In contrast, DeMarzo

[9] studies the case of a risk-neutral issuer who designs one or more securities based

on a �nite, exogenous set of assets. The issuer then sees signals of the �nal values of

its assets and chooses how much of each security to sell. DeMarzo shows that pooling

the assets before designing the security has a cost and a bene�t for the issuer. The

cost is information destruction: pooling prevents the issuer from signalling positive

34Monotonicity is needed since the issuer�s signal is noisy. In particular, suppose the bank issues

a security that behaves like debt with one exception: its payo¤ falls slightly in particularly good

states. Assume these states have positive probability for intermediate signal values as well. Then

this change might lead to a smaller rise in the estimated security payo¤ as the issuer�s signal rises

from low to intermediate values. Hence, this security might be even less informationally sensitive

than debt.
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information for some securities and negative information for others. The bene�t is

diversi�cation: if the assets��nal values conditional on the signals are not perfectly

correlated, then pooling them lowers the risk of security default. Whether pooling

is optimal depends on whether the diversi�cation bene�t outweighs the information

destruction e¤ect.

Permitting multiple securities would have two e¤ects in our model. First, a bank�s

pro�ts from securitizing its loans to a given location would depend on which of its

various securities it would optimally add the loans to. Second, in the issuance game

between the two banks, each bank would choose multiple quantities rather than a

single quantity. It seems unlikely that either of these changes would alter our basic

results. For simplicity, therefore, we follow DD in restricting each bank to a single

security.

Another way banks generate multiple securities is to issue multiple tranches of a

single loan portfolio. A bank may also be able to delay designing its security until

after it discovers its private information. DeMarzo [9] shows that these practices are

equivalent.35 While DD�s [10] securitization pro�t function has a closed form solution,

DeMarzo�s [9] pro�t function depends on the solution to a di¤erential equation. This

makes it challenging to incorporate into our setting. However, the two functions have

some properties in common (DeMarzo [9, Lemmas 5 and 9]), so some of our �ndings

might generalize. This might be an interesting question for future research.

Adverse selection in security issuance was �rst analyzed by Myers and Majluf

[26]. They assume a �rm must raise a �xed amount of capital and focus on equity

issuance, while brie�y considering debt. Nachman and Noe [27] (NN) also assume

a �xed amount of capital must be raised but allow for a full set of securities. They

give distributional conditions that are su¢ cient for a �rm to issue debt. In their

35More precisely, delaying security design until after the (one dimensional) information is revealed

is equivalent to issuing an unlimited number of tranches (each of which has a monotone payo¤)

before the information is revealed.
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work, the security is designed ex post, while DD assume ex ante design. Axelson [2]

reverses the usual informational assumptions: investors are informed while the issuer

is not. Like DD and NN, he �nds that debt is optimal.

Biais and Mariotti [3] (BM) modify DD in two essential ways. They assume that

security buyers have market power and thus earn positive pro�ts. Moreover, they use

mechanism design to analyze the optimal trading mechanism, while DD assume that

it is a signalling game. BM also �nd that the optimal security is debt. However, in

BM�s optimal trading mechanism, all issuer types sell 100% of their securities. This

contrasts with DD, in which there is some retention.

Boot and Thakor [4] analyze a model in which a �rm has various assets that it

wishes to sell, and investors can exert costly e¤ort to discover information about these

assets�values. There are noise traders, so gathering information can be pro�table.

Splitting the �rm�s assets into two securities, one informationally sensitive and the

other not, stimulates trade, which gives investors an incentive to discover information

about the assets�values. This is pro�table for the issuer since it mitigates adverse

selection. The results of Chemla and Hennessy [7], discussed above, build on this

insight.

Demange and Laroque [11] and Rahi [29] study models in which a risk-averse

entrepreneur with a noisy private signal of the value of his projects designs and sells

securities. In these papers, unlike DD and ours, the issuer decides how much to issue

before observing her private information. The private information only permits the

issuer to earn trading pro�ts afterwards.

6.3 Lending Competition with Adverse Selection

Our model is also related to prior research on lending competition with adverse selec-

tion in the absence of securitization. Perhaps the closest is Hauswald and Marquez

[18] (HM). HM assume that a bank�s cost of gathering soft information is greater

for more distant applicants. This is also true in our model, where the cost is zero
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for local applicants and in�nite for remote ones. Because banks know more about

local applicants, they lend at high interest rates to quality local applicants and o¤er

low interest rates to some remote applicants. In HM, the latter e¤ect occurs because

other banks - fearing a winner�s curse less - compete more aggressively for these re-

mote applicants. In our model, it is because o¤ering a lower interest rate prevents

cream-skimming by a remote applicant�s local bank. In both models, remote bor-

rowers default more since their lending banks have less information about their credit

quality.

In an earlier model, Sharpe [31] assumes that a bank�s soft information arises

endogenously from its prior loans to applicants. Because of a winner�s curse, banks

that lack this information do not lend to mature applicants. Analogously, in our

model all lending is local if banks cannot securitize. Finally, in Broecker [5], each

bank sees a noisy private signal of each loan applicant�s type. Since a bank attracts

only those borrowers who are turned down by banks that o¤er lower rates, a bank

that charges a high rate tends to get low quality applicants. Similarly, remote banks

in our model charge low interest rates in order to avoid cream-skimming by better

informed local banks.

7 Conclusions

The model of DeMarzo and Du¢ e [10] assumes a single issuer who designs a single

security. The issuer then sees private information about this security�s value and

chooses how much to sell. In equilibrium, the issuer varies the amount that it sells

in order to signal the security�s value. This is costly for the issuer since it must sell

less of the security when the gains from trade are higher. In order to minimize these

costs, the issuer designs a security that is not very sensitive to its private information.

In DeMarzo and Du¢ e [10], the issuer�s initial portfolio of assets is exogenous.

This is an important limitation: in practice, a bank�s lending behavior may be
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in�uenced by its expected pro�ts from securitizing its resulting loan portfolio. We

study this issue in a rich setting in which regional banks �rst compete for borrowers

and then design and issue securities based on their resulting loan portfolios.

As in prior models, we �nd that securitization expands lending by connecting

liquid investors with loan applicants. However, we also �nd that securitization creates

a bias towards remote loans, which can be securitized without contributing to a

bank�s lemons problem. Moreover, since banks lack soft information about remote

applicants, remote borrowers tend to have stronger observables than local borrowers.

In addition, banks must o¤er lower interest rates to remote applicants in order to

prevent cream skimming by the applicants� local banks. Thus, remote loans will

have lower interest rates than local loans, and securitization strengthens the negative

relation between a borrower�s public information and the interest rates she pays.

Since banks lack soft information about remote applicants, they do not screen as

well when lending remotely. Hence securitization, which stimulates remote lending,

raises borrowers� conditional and unconditional default rates. Moreover, in cross

section, securitized loans will have higher default rates conditional on observables

since banks lower lending standards more in local areas that are more pro�table to

securitize. As detailed in section 1, all of our predictions are consistent with prior

empirical research.

While securitization has the potential to raise social welfare by connecting liquid

investors with worthy loan applicants, this is tempered by two ine¢ ciencies. The �rst

is public information bias: since the remote bank relies exclusively on observables,

there is an ine¢ cient bias towards applicants with strong observables such as credit

scores. This is ine¢ cient as these applicants are favored over creditworthy applicants

with weak observables.

The second ine¢ ciency is securitization pro�t bias. E¢ ciency requires that only

the most creditworthy applicants get loans. However, with securitization banks also

prefer applicants who enhance the value of their security. One reason can be that the
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bank is not well acquainted with the applicant�s local macroeconomic environment.

In this case, the applicant�s loan does not add much to the lemons problem the bank

will face in selling its security. Another is that the applicant has a good chance of

repaying her loan in bad macroeconomic states. By raising the payout to investors

when the security defaults, these borrowers raise the security�s value, which translates

into greater securitization pro�ts. However, since all participants are risk neutral, it

is ine¢ cient to favor these borrowers.

A Proofs

Proof of Claim 1: Let �` = supspub � (spubj`), �` = infspub � (spubj`), �spub ;` =

infspriv � (sprivjspub; `), and �spub ;` = supspriv � (sprivjspub; `). Integrating by parts,

� (spubj`) =

Z
�

�dF (�jspub; `) =

�
Z
�

�d (1� F (�jspub; `)) =

Z
�

(1� F (�jspub; `)) d�:

Hence, @
@spub

� (spubj`) equals �
R
�

@F(�jspub ;`)
@spub

d� which, by Public Signal Monotonicity,

exists and lies in
�R
�
� (�) d�;

R
�
� (�) d�

�
. In addition,

E (�jspriv; spub; `) =

Z
�

�dF (�jspriv; spub; `) =

�
Z
�

�d (1� F (�jspriv; spub; `)) =

Z
�

(1� F (�jspriv; spub; `)) d�:

Thus, @
@spriv

E (�jspriv; spub; `) = �
R
�

@F(�jspriv ;spub ;`)
@spriv

d� which, by Private Signal Monotonic-

ity, exists and lies in
�R
�
� (�) d�;

R
�
� (�) d�

�
. Since � 2 (0; 1), the slope of � (sprivjspub; `)

lies in <++. Q.E.D.

Proof of Claim 2: The proof of Claim 1 implies that (a) � (spubj`) has a di¤er-

entiable inverse function spub (�j`) of �, which is a bijection from
�
�
`
; �`

�
� [0; 1] to

(0; 1) whose slope lies in <++ and (b) � (sprivjspub; `) has a di¤erentiable inverse func-

tion spriv (�jspub; `) of �, which is a bijection from
�
�spub ;`; �spub ;`

�
�
�
0; � (spubj`)�1

�
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to (0; 1) whose slope lies in <++. We now extend the function spub (�j`) to all

pairs (�; `) in (0; 1) � [0; 1] by de�ning it as one if � > supspub � (spubj`) and zero if

� < infspub � (spubj`). By Claim 1,

G (�0; `0) = Pr (spub < spub (�0j`) and ` � `0) =

Z `0

`=0

Z spub (�0j`)

spub=�1
f (spub; `) dspubd`:

Hence, g (�0; `0) =
@2G(�0;`0)
@�0@`0

= f (spub (�0j`0) ; `0)
@spub (�0j`0)

@�0
where f (spub (�0j`0) ; `0)

denotes the marginal density f (spub; `) evaluated at (spub (�0j`0) ; `0). Since (�0; `0)

is feasible, infspub � (spubj`0) < �0 < supspub � (spubj`0), whence spub (�0j`0) lies in (0; 1)

by Claim 1. Thus, f (spub (�0j`0) ; `0) 2 <++ by assumption. Claim 1 implies further

that @spub (�0j`0)
@�0

2 <++. Thus, g (�0; `0) 2 <++ as claimed. Q.E.D.

Proof of Claim 3: First,

H (�0j�0; `0) = Pr (� (sprivjspub; `) � �0jspub = spub (�0j`0) ; ` = `0)

= Pr (spriv � spriv (�0jspub; `) jspub = spub (�0j`0) ; ` = `0)

= F (spriv (�0jspub; `) jspub (�0j`0) ; `0) :

Hence,

H (�j�; `) = F (spriv (�jspub; `) jspub (�j`) ; `) ,

H 0 (�j�; `) = F 0 (spriv (�jspub; `) jspub (�j`) ; `) s0priv (�jspub; `) , and

H 00 (�j�; `) = F 00 (spriv (�jspub; `) jspub (�j`) ; `)
�
s0priv (�jspub; `)

�2
+F 0 (spriv (�jspub; `) jspub (�j`) ; `) s00priv (�jspub; `) :

Di¤erentiating the identity � (spriv (�jspub; `) jspub; `) = � with respect to �,

1 = � 0 (spriv (�jspub; `) jspub; `) s0priv (�jspub; `) and

0 = � 0 (spriv (�jspub; `) jspub; `) s00priv (�jspub; `)

+� 00 (spriv (�jspub; `) jspub; `)
�
s0priv (�jspub; `)

�2
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so that

s0priv (�jspub; `) = [� 0 (spriv (�jspub; `) jspub; `)]�1 = [� 0 (sprivjspub; `)]�1 and

s00priv (�jspub; `) = � � 00 (sprivjspub; `)
[� 0 (sprivjspub; `)]3

:

Accordingly,

H 00 (�j�; `) �
H 0 (�j�; `) =

�
F 00
�
s0priv

�2
+ F 0s00priv

�
�

F 0s0priv
=

F 00

F 0� 0
� � 00�

[� 0]2
:

Q.E.D.

Proof of Claim 4: Consider, for instance, bank a. If it competes for a borrower in

region B, it must make the �rst o¤er. It does not know the borrower�s private type �.

Since bank b knows �, bank b can tell which of bank a�s o¤ers are pro�table for bank

a and which are not. However, in the absence of securitization the two banks have

common values: the value of lending to a borrower is simply her discounted expected

repayment less the common cost of capital. Thus, bank b will slightly underbid bank

a�s pro�table o¤ers and refrain from bidding on the unpro�table ones. As a result,

bank a will succeed in lending only to unpro�table borrowers. Knowing this, bank a

will not make o¤ers to any agents who reside in region B in period 1. But given this,

in period 2 bank b can charge the maximum possible interest rate of � and any of

these agents will agree. It will do so if the resulting discounted expected repayment,

����E
�
SR`
�
, exceeds its unitary cost of capital. Q.E.D.

Proof of Claim 6: Equilibrium requires that bank a does not want to change its

strategy taking bank b�s strategy qb as given. De�ne

Pa (q; �) =

Z
ub2<N+

pa
�
q; qb

�
ub
�
; �
�
d	
�
ubj�

�
and

�a (u
a; �) =

Z
ub2<N+

�a
�
ua; ub; �

�
d	
�
ubj�

�
:
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Integrating conditions 1 and 3 over bank b�s possible signal vectors ub, we �nd

that, almost surely, bank a�s optimal quantity q maximizes q [Pa (q; �)� ��a (u
a; �)]

and Pa (qa (u
a; �) ; �) equals �a (ua; �). These are the conditions for a separat-

ing equilibrium of the single-sender game analyzed by DeMarzo and Du¢ e [10, p.

77]. By their Proposition 2 [10, p. 78], bank a sells a quantity qa (u
a; �) =hb�a (0; �) =b�a (ua; �)i 1

1��
and the expected market price when bank a sells a quan-

tity q is Pa (q; �) = b�a (0; �) =q1��. The quantity and expected price of bank a�s

security thus does not depend on bank b�s strategy since b�a (ua; �) does not. Hence,
DeMarzo and Du¢ e�s equation (4) [10, p. 79] implies that in any separating equilib-

rium, bank a�s securitization pro�ts conditional on the signals ua and � are given by

� (ua; �) = (1� �) b�a (0; �) 1
1�� b�a (ua; �)� �

1�� as claimed.

It remains to show that bank a�s optimal security is debt. Following DeMarzo

and Du¢ e [10, pp. 88-89], let 'a (�) be any monotone security. Since Ya is nonde-

creasing in each factor �Ak , for each public signal � the lowest possible realization

of E ('a (Ya) jua; �) is E ('a (Ya) jua = 0;�). Now consider a standard debt security

min fma; Yag. By the dominated convergence theorem, E (min fma; Yag jua = 0;�)

is continuous in ma, so we may choose ma so that E (min fma; Yag jua = 0;�) =

E ('a (Ya) jua = 0;�). Let d (Ya) = 'a (Ya)�min fma; Yag and  (ua; �) = E (d (Ya) jua; �);

by construction,  (0; �) = 0. Because 'a (Ya) � Ya, for Ya � ma we have d (Ya) =

'a (Ya) � Ya � 0. Moreover, for Ya � ma, d (Ya) = 'a (Ya) � ma, which is nonde-

creasing in Ya. Hence, there is a y� 2 [ma;1) [ f1g such that d (Ya) > 0 if and

only if Ya > y�. Moreover, since the measure of agents is 2 and each is willing to pay

at most �, Ya is bounded by 2�. Let � (yjua; �) be the conditional density of Ya at

the realization y given the signals ua and �. Since the conditional (on ua and �) dis-

tribution of �a is mutually absolutely continuous with respect to ua, the conditional

density has a well de�ned Radon-Nikodym derivative �(yjua;�)
�(yj0;�) for each public signal

�. As noted by DeMarzo and Du¢ e [10, p. 88, n. 30], the measure � can be chosen

so that the Radon-Nikodym derivative �(yjua;�)
�(yj0;�) is nondecreasing in y. Thus, for any
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signal vector ua,

 (ua; �) = E (d (Ya) jua; �) =
Z 2�

y=0

d (y)� (yjua; �) =
Z 2�

y=0

d (y)
� (yjua; �)
� (yj0; �) � (yj0; �) dy

�
Z 2�

y=0

d (y)
� (y�jua; �)
� (y�j0; �) � (yj0; �) dy =

� (y�jua; �)
� (y�j0; �)

Z 2�

y=0

d (y)� (yj0; �) dy = 0

Thus, E ['a (Ya) jua; �] = E [min fma; Yag jua; �] + (ua; �) � E [min fma; Yag jua; �].

Hence, by switching from the security 'a (Ya) to the security min fma; Yag, the bank

weakly lowers b�a (ua; �) (the expected payout of the security conditional on ua and
�) while not changing b�a (0; �), thus weakly raising conditional pro�ts � (ua; �) and
thus unconditional pro�ts E [� (ua; �)]. This shows that the optimal security is debt.

Q.E.D.

For the remainder, we need additional notation. Let zB�` = rB�`p
B
�` denote the

product of the interest rate charged to region B borrowers with credit score � in

location ` and the proportion of these loans that are securitized. This quantity,

which must lie between zero and rB�`, can be interpreted as the amount of loans that

bank a securitizes, expressed in units of the face value rB�` of these loans. Given r
B
�`,

choosing pB�` is clearly equivalent to choosing z
B
�`. With this change of variables,

Y B
a

�
�B
�
=

Z 1

`=0

Z 1

�=0

xB�`z
B
�`

"
�SB`

Z �B�`

�=0

�dH (�j�; `)
#
dG (�; `) : (15)

Bank a�s Lagrangean equals its expected payo¤ �a plus constraint terms, which

we write in a manner analogous to the integrals that appear in �a:

L = �a +

Z 1

`=0

Z 1

�=0

�
a�`z

B
�` + b�`

�
rB�` � zB�`

��
�
�
1�H

�
�B�`j�; `

��
dG (�; `)

+

Z 1

`=0

Z 1

�=0

"
c�`r

A
�`�

Z ��`

�=�A�`

�dH (�j�; `) + d�`r
A
�`�

Z �A�`

�=�A�`

�dH (�j�; `)
#
dG (�; `)

where a�`, b�`, c�`, and d�` are Lagrange multipliers for the constraints zB�` � 0,

zB�` � rB�`, �
A
�` � ��`, and �A�` � �A�`, respectively. For technical reasons, we omit

the constraint rB�` � � and verify later that it holds. Bank b�s Lagrangean, which is

analogous, is omitted.
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Proof of Claim 7: W.l.o.g. let i = a and j = b. Since uA and �B are independent

conditional on �,

E
�
1 (ma > Ya) �

B
k

��ua; �� = Z
�B
�Bk

�Z
�A
1
�
ma > Y B

a

�
�B
�
+ Y A

a

�
�A
��
d�
�
�Ajua; �

��
d�
�
�Bj�

�
;

where �
�
�Bj�

�
is the distribution function of �B conditional on �. By stochastic

dominance, the interior integral is nonincreasing in ua, so the double integral is as

well. But stochastic dominance also implies b�a (0; �) � b�a (ua; �). Hence �B0ak (�) �
�Bak (�) for all public signals �, which proves that 


B
a` (�) > 0 since � < 1. Hence,


Ba` = E
�

Ba` (�)

�
> 0. Q.E.D.

Proof of Theorem 8: the proof consists of the following claims.

Claim 10 If bank a competes for region B borrowers with credit score � in location

`, it bids a strictly positive interest rate rB�`.

Claim 11 If bank a competes for customers with credit score � in location ` in region

B, then it includes all of them in its security: if xB�` = 1, then p
B
�` = 1.

Claim 12 Consider the group of agents with credit score � living in location ` in

region B. Given the interest rate rB�` o¤ered by bank a, bank b responds as follows.

1. It lends to all agents whose private type � exceeds

�B�` = min
�
��`; ��`r

B�
�` =r

B
�`

	
: (16)

In particular, it strictly prefers (not) to lend when a borrower�s private type �

exceeds (respectively, is less than) ��`rB��` =r
B
�`, and is indi¤erent when � equals

this expression.

2. If bank b lends to some region B borrowers in this group (i.e., if �B�` < ��`),

then it securitizes all of these borrowers if 
Bb` > 0 and none of them if 

B
b` < 0.
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Claim 13 If bank a competes for region B borrowers with credit score � in location

` (if xB�` = 1), it o¤ers the interest rate r
B
�` = min

�
�; rB��`

	
and lends to all borrowers

in this group. If rB��` � �, then bank b is just willing not to bid for the best borrower

in this group: the borrower whose private type � is ��`. If rB��` > �, bank b strictly

prefers not to bid for any borrowers in the group.

Claim 14 Bank a competes for region B borrowers with credit score � in location `

(i.e., it sets xB�` = 1) if and only if

rB�`
�
�E
�
SB`
�
+ 
Ba`

�
� > 1: (17)

This concludes the proof of Theorem 8. Q.E.D.

Proof of Claim 10: Suppose otherwise: rB�` = 0. Since r
B
�` = 0, @X

B
a =@x

B
�` = 0 and

@Y B
a =@x

B
�` = 0 (since z

B
�` � rB�`). Hence,

@L
@xB�`

= �E

 
@XB

a

@xB�`

!
� @CBa
@xB�`

+ (1� �)E

 
@

@xB�`

b�a (0; �) 1
1��b�a (ua; �) �
1��

!
= �@C

B
a

@xB�`
< 0:

Thus, xB�` = 0. Q.E.D.

Proof of Claim 11: The �rst order condition for zB�` is

0 = E

0B@ b�a (0; �) 1
1��b�a (ua; �) �
1��

0B@E
�
1 (ma > Ya)

@Ya
@zB�`

���ua = 0;��b�a (0; �) � �
E
�
1 (ma > Ya)

@Ya
@zB�`

���ua; ��b�a (ua; �)
1CA
1CA

+(a�` � b�`) �g (�; `)

Z �B�`

�=0

�dH (�j�; `)

However,
1

�g (�; `)
R �B�`
�=0 �dH (�j�; `)

@Ya
@zB�`

= xB�`S
B
` = xB�`

KX
k=1

�k`�
B
k

Hence,

b�` � a�` =

8<: 0 if xB�` = 0


Ba` if x
B
�` = 1

(18)
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By Claim 7, 
Ba` > 0, whence b�` � a�` > 0 if xB�` = 1. But a�` and b�` are the

Lagrange multipliers for the constraints zB�` � 0 and zB�` � rB�`, respectively. Thus,

by Claim 10, either a�` or b�` must be zero. Together with (18), this implies that

b�` = 

B
a` > 0 = a�`, so 0 < zB�` = rB�`. Q.E.D.

Proof of Claim 12: The derivatives of the bank�s pro�ts �b and the Lagrangean

L with respect to �B�` are

@�b
@�B�`

= rB�`��
B
�`H

0 ��B�`j�; `� g (�; `) 
Bb` (19)

and
@L
@�B�`

= rB�`��
B
�`H

0 ��B�`j�; `� g (�; `) �
Bb` + d�` � c�`
�
: (20)

Since this must equal zero, it follows that

c�` � d�` = 

B
b`: (21)

The derivatives of the bank�s pro�ts �b and the Lagrangean L with respect to �B�`

are
@�b
@�B�`

=
�
1� �E

�
rB�`��

B
�`S

B
`

�
� rB�`��

B
�`


B
b`

�
H 0 ��B�`j�; `� g (�; `) (22)

and
@L
@�B�`

=
@�b
@�B�`

� d�`r
B
�`��

B
�`H

0 ��B�`j�; `� g (�; `) : (23)

First, suppose �B�` = ��`. Then �B�` = ��` as well, so
@�b
@�B�`

� 0 and @�b
@�B�`

+ @�b
@�B�`

�

0. (The latter condition means that it is not optimal for the bank to lower both

�B�` and �
B
�` while keeping them equal.) These two inequalities hold if and only if

1� �E
�
rB�`��`�S

B
`

�
� rB�`��`�

�

Bb`
�+ � 0 which holds if and only if rB��` � rB�` by (10).

This con�rms that (16) holds when �B�` = ��`.

Now suppose �B�` < ��`. Recall that c�` and d�` are the Lagrange multipliers

for the constraints �B�` � ��` and �B�` � �B�`, respectively. Only one of these can

bind since �B�` < ��`. Hence, either c�` or d�` is zero. Thus, by (21), c�` =
�

Bb`
�+

while d�` =
�
�
Bb`

�+
. Hence, bank b securitizes all of its borrowers in the group
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(c�` > 0) if 
Bb` > 0, and none of them (d�` > 0) if 
Bb` < 0, as claimed. Moreover,

by (21), (22), and (23), 0 = 1� �E
�
rB�`��

B
�`S

B
`

�
� rB�`��

B
�`

�

Bb`
�+
, which is equivalent

to �B�` = ��`r
B�
�` =r

B
�`. This shows that (16) holds when �

B
�` < ��` as well. Hence, (16)

always holds. Finally, since only bank b knows �, it strictly prefers (not) to lend to

borrowers whose types � exceed (respectively, are less than) ��`rB��` =r
B
�`. Q.E.D.

Proof of Claim 13: The Lagrangean is not di¤erentiable at the optimal interest

rate rB�`. Hence, to �nd this optimal rate, we must consider the part of the Lagrangean

in which rB�` or �
B
�` (which depends on r

B
�`) appears. It is

�E
�
XB
a

�
� CBa + (1� �)E

 b�a (0; �) 1
1��b�a (ua; �) �
1��

!

+

Z 1

`=0

Z 1

�=0

Z �B�`

�=0

�
a�`z

B
�` + b�`

�
rB�` � zB�`

��
��dH (�j�; `) dG (�; `) :

In addition, since the choice of rB�` does not a¤ect terms that involve credit scores

�0 6= � and locations `0 6= `, the optimal rB�` is chosen to maximize

�E
�
SB`
�
�

Z �B�`

�=0

rB�`�dH (�j�; `)�
Z �B�`

�=0

dH (�j�; `)

+ (1� �)E

 b�a (0; �) 1
1��b�a (ua; �) �
1��

!
+

Z �B�`

�=0

�
a�`z

B
�` + b�`

�
rB�` � zB�`

��
��dH (�j�; `) :

Now, since @Ya
@rB�`

= @
@rB�`

R �B�`
�=0 x

B
�`z

B
�`��dH (�j�; `) g (�; `)SB` ,

@

@rB�`

 
(1� �)E

 b�a (0; �) 1
1��b�a (ua; �) �
1��

!!
=

@

@rB�`

 Z �B�`

�=0

zB�`��dH (�j�; `)
!
g (�; `) 
Ba`:

By Claim 11, a�` = 0 and b�` = 
Ba` > 0. Hence, rB�` is chosen to maximize

c�1
Z �B�`

�=0

�
rB�`� � c

�
dH (�j�; `) d

= c�1I
�
rB�`
�

(24)

where c�1 = �
�
�E
�
SB`
�
+ 
Ba`

�
is independent of rB�`. If r

B
�` < rB��` , by (16), �

B
�` equals

��` so small changes in rB�` do not a¤ect it. Hence, (24) is strictly increasing in r
B
�`,

so the optimal rB�` is at least min
�
�; rB��`

	
.
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If rB��` � �, we are done. If rB��` < �, it su¢ ces to show that the optimal rB�` is no

greater than rB��` . Let us write r = rB�`, r
� = rB��` , and H (�) = H (�j�; `) for brevity,

and let S � [0; ��`] be the support of � for the given values of � and `. Consider any

r > r�. We will show that if I (r) > 0, then I 0 (r) < 0. By (16), �B�` = ��`r
�=r < ��`,

so

I (r) =

Z ��`r
�=r

�=0

(r� � c) dH (�) =

Z
�2[0;��`r�=r]\S

(r� � c) dH (�) (25)

With the change of variables x = r�, I (r) = 1
r

R
x2[0;��`r�]\S0 (x� c)H 0 �x

r

�
dx where

S 0 = fx 2 [0; r] : x=r 2 Sg is the support of x. Thus,

I 0 (r) = � 1
r2

 Z
x2[0;��`r�]\S0

(x� c)

"
H 0 �x

r

�
+H 00 �x

r

�
x
r

H 0
�
x
r

� #
H 0
�x
r

�
dx

!
:

Changing variables back,

I 0 (r) = �1
r

 Z
�2[0;��`r�=r]\S

(r� � c)

�
H 0 (�) +H 00 (�) �

H 0 (�)

�
dH (�)

!
: (26)

For any functions '0 (�) and '1 (�), let E
� ('0) and Cov

� ('0; '1) denote the expec-

tation of '0 and covariance of '0 and '1, both conditional on � 2 [0; ��`r�=r] \ S.

Then I 0 (r) = �1
r
E� (xy)H (��`r

�=r), where x (�) = r� � c and y (�) = H0(�)+H00(�)�
H0(�) .

By de�nition of covariance, Cov� (x; y) = E� (xy) � E� (x)E� (y). Rearranging,

E� (xy) = Cov� (x; y) + E� (x)E� (y). Since I (r) > 0, E� (x) > 0. By No Cream

Skimming, E� (y) > 0 and Cov� (x; y) � 0. This proves that E� (xy) > 0, so

I 0 (r) < 0 as claimed.

Finally, by Lemma 12, �B�` = min
�
��`; ��`r

B�
�` =r

B
�`

	
. Substituting for rB�`, �

B
�` =

min
�
��`; ��`r

B�
�` =min

�
�; rB��`

		
= ��`: bank b does not lend to any borrowers in this

group. Moreover, by Lemma 12, bank b strictly prefers (not) to lend to borrowers

whose types � exceed (respectively, are less than) ��`rB��` =r
B
�`. If rB��` � �, then

rB�` = min
�
�; rB��`

	
= rB��` : bank b is just willing not to bid for the best borrower in

this group: the borrower whose private type � is ��`. If rB��` > �, then rB�` = � < rB��` :

bank b strictly prefers not to bid for any borrowers in the group. Q.E.D.
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Proof of Claim 14: If the bank competes for these borrowers, then (a) by Claim

11 it securitizes every borrower who accepts (i.e., zB�` = rB�`) and (b) by Lemma 12,

it outbids bank b for all borrowers in this group: �B�` = ��`. By di¤erentiating

the Lagrangean L with respect to xB�`, one can easily verify that competing for these

borrowers (setting xB�` = 1) raises bank a�s pro�ts if and only if (17) holds. Q.E.D.
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